
Eurographics Symposium on Parallel Graphics and Visualization (2017)
J. C. Bennett, A. Telea (Editors)

Prediction of Distributed Volume Visualization Performance
to Support Render Hardware Acquisition

G.Tkachev, S.Frey, C.Müller, V.Bruder, T.Ertl

University of Stuttgart

Abstract

We present our data-driven, neural network-based approach to predicting the performance of a distributed GPU volume renderer
for supporting cluster equipment acquisition. On the basis of timing measurements from a single cluster as well as from individual
GPUs, we are able to predict the performance gain of upgrading an existing cluster with additional or faster GPUs, or even
purchasing of a new cluster with a comparable network configuration. To achieve this, we employ neural networks to capture
complex performance characteristics. However, merely relying on them for the prediction would require the collection of training
data on multiple clusters with different hardware, which is impractical in most cases. Therefore, we propose a two-level approach
to prediction, distinguishing between node and cluster level. On the node level, we generate performance histograms on individual
nodes to capture local rendering performance. These performance histograms are then used to emulate the performance of
different rendering hardware for cluster-level measurement runs. Crucially, this variety allows the neural network to capture
the compositing performance of a cluster separately from the rendering performance on individual nodes. Therefore, we just
need a performance histogram of the GPU of interest to generate a prediction. We demonstrate the utility of our approach using
different cluster configurations as well as a range of image and volume resolutions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing
algorithms I.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics

1. Introduction

Volume rendering is a powerful method for visualization of three-
dimensional data obtained through measurements or simulation. It
is therefore one of the most important techniques in scientific visu-
alization. Volume rendering is not only computationally expensive,
but also an embarrassingly parallel problem. Therefore, it is often
solved on (multi-layered) parallel architectures such as GPU clus-
ters. In such scenarios, many different factors influence rendering
performance, which makes the prediction of the overall rendering
performance a challenging task. However, performance prediction
has a variety of useful applications. First, it supports decisions made
during systems design: a performance model can be quickly used
to estimate how hypothetical changes to hardware or software will
affect the performance of an application, without implementing
them. Second, it can be used for recognizing the need and driving
the optimization process of a newly created application. The im-
plementation of parallel applications is a difficult, error-prone task,
and an existing model may help find issues in application perfor-
mance. Finally, a performance model is useful during equipment
procurement, allowing potential performance gains to be estimated
before purchasing expensive hardware, helping to achieve an opti-
mal performance-to-price ratio.

While there is a significant amount of research on performance
prediction, visual computing applications have a set of special, chal-
lenging properties. Volume rendering, on which we focus in this
work, is an inherently interactive technique, with user input having
a large impact on the load balance and, ultimately, performance. Ap-
proaches assuming stable and repetitive performance (like in many
HPC codes) are inapplicable to this case, warranting specialized per-
formance models. Furthermore, visual computing applications use
highly parallel discrete graphics hardware, complicating the overall
prediction problem with an additional node-local level of parallelism
and transfer bottlenecks, both in each GPU and between GPUs of a
node. These properties make predictions significantly more complex.
While machine learning-based approaches are widely used to cap-
ture the properties of complex systems, a general model of cluster
performance should ideally be trained using data from a wide range
of possible variations. In our target application scenario dealing with
render hardware upgrades for GPU clusters, this means including
measurements from reasonable combinations of different sizes of
clusters with varying node hardware (CPUs, etc.), different number
and types of GPUs, and different network interconnects. However,
interchanging node hardware of the whole cluster to perform each

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

set of measurements is impractical in most cases as it would require
an enormous amount of equipment and effort.

To address this, we propose a two-level approach to predicting
parallel volume rendering performance based on artificial neural
networks (ANNs). Neural networks are a flexible data-driven tool
that can be used without manually putting application and hardware-
specific knowledge into the model. For training, we propose gener-
ation of performance histograms, which allow for acquiring more
training data from a single cluster. These can be used to emulate
different node hardware by simply stalling the nodes during local
rendering for a predefined amount of time. This way, we basically
decouple local rendering (which is practically limited by GPU per-
formance) and compositing (which is dominated by the network
speed). By changing local render time, we can measure its effect on
the overall cluster performance, and collect the data needed to train
a neural network capable of predicting it.

In this paper, after a discussion of related work in Sec. 2, we
discuss what we consider to be the main contributions of our pa-
per (i) A two-level approach to predicting the performance of an
upgraded cluster for distributed volume rendering (Sec. 3), (ii) the
use of performance histograms to emulate local rendering perfor-
mance (Sec. 4) and (iii) of neural networks to capture cluster-level
performance on the basis of these performance histograms (Sec. 5).
We (iv) demonstrate that our approach adequately predicts the per-
formance of an upgraded cluster (Sec. 6), and discuss its properties,
current limitations and future work (Sec. 7).

2. Related work

Volume visualization. An overview of the current state of the art in
GPU techniques for interactive large-scale volume visualization was
given by Beyer et al. [BHP15]. Popularly, parallel rendering is classi-
fied into three classes: sort-first, sort-middle and sort-last [MCEF94].
In our work, we use latter, i. e. we parallelize over volume data (in
object space) by having each GPU create a local image from its own
data. In a second step, local results are composited into yield the
final image. The two phases differ in that the first one can be done
completely independently, while compositing is done collectively
and begins only after finishing all rendering tasks.

Rendering performance of large scale systems has been the sub-
ject of several studies in the past. Petarka et al. [PYR∗08] imple-
mented, tested and analyzed performance of parallel volume render-
ing on an IBM Blue Gene/P, while Howison et al. [HBC12] investi-
gated the benefits of a hybrid parallel approach to volume raycasting
in their work. Focusing on small to medium scale GPU visualization
clusters (similar to the one used in this work), Müller et al. [MSE06]
as well as Fogal et al. [FCS∗10] (among others) presented respective
performance characteristics for volume rendering.

Performance prediction. Assessment, modeling and prediction
of application performance in distributed environments is an ac-
tive field of research in high-performance computing. Different
approaches for performance modeling have been proposed in re-
cent years. Those include performance skeletons [SSX08], regres-
sion [BRL∗08], micro benchmarks [EB16] and neural networks
[SIM∗07]. We use neural networks as a component in our prediction

model. Ipek et al. [IdSSM05] also predicted performance of a large
scale parallel application applying a multilayer neural network. They
trained their model with data from executions on the target platform,
to capture full system complexity. Lee et al. [LBdS∗07] extended the
neural network approach with additional statistical techniques for
preliminary data analysis and added a comparison to a piece-wise
polynomial regression approach in their work. They both applied
their models on well known HPC benchmarks, namely SMG2000,
a semicoarsening multigrid solver [BFJ00], and High-Performance
LINPACK [Pet04]. However, those benchmarks only consider CPUs
and have significantly different characteristics in comparison to dis-
tributed volume rendering. Unfortunately, CPU-focused techniques
are typically inadequate for modeling GPU performance. In contrast,
we not only consider GPUs, but also crucially have a different focus
on predicting performance for hardware upgrades.

GPU performance models for guiding application optimization
have been proposed by Baghsorkhi et al. [BDP∗10]. They developed
a compiler-based approach for analyzing GPU kernel code and mod-
eling its performance. Zhang and Owens [ZO11] took a different
approach but with a similar goal. They utilize micro-benchmarks to
accurately measure various aspects of GPU performance, using the
results to construct a performance model. Artificial neural networks
for performance and power prediction of GPGPU applications were
applied by Wu et al. [WGL∗15]. They formed a collection of repre-
sentative scaling behaviors by employing k-means clustering. Using
neural network classifiers, they mapped those scaling behaviors to
performance counter values. However, their performance estimation
model was designed to predict how applications scale as a GPU
configuration changes, i.e. their main objective as well as the scope
differs from ours (in that they focus on single GPU performance).

In particular for parallel volume rendering, Rizzio et al. [RHI∗14]
constructed an analytical model for predicting of the scaling be-
havior on GPU clusters, separately considering different rendering
phases. Larsen et al. [LHK∗16] developed a performance model for
rasterization, ray tracing and volume rendering algorithms in the con-
text of in-situ visualization. They constructed an analytical model
for the performance of every application being executed on a single
machine, and used statistical methods to determine constants. Then
the authors extended the model to parallel execution by introducing
a similar model for image compositing performance. Their model is
“semi-empirical” [HGKS11], i. e. a combination of empirical mea-
surements (e. g., execution times) and an analytical performance
model. In contrast, we take a solely empirical approach, training
a neural network and intentionally abstracting away hardware and
application-specific details from the model. This has the benefit of
implicitly capturing the interplay between application and hardware,
without the need for manually adapting the model to a given sce-
nario. Also, we can faster adapt to significant hardware changes via
(automatic) training rather than re-modeling. Most importantly, our
objective differs in that we focus on hardware procurement as our
main use case rather than the question of feasibility in the context
of in-situ rendering.

3. Overview

Objective. The main objective of the approach presented here is to
predict the total render time Tc of a frame, based on the size of the

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

Node Level (Section 4) Cluster Level (Section 5)

Tr
ai

n
in

g
P

re
d

ic
ti

o
n

GPU A

GPU B

Rendering
Histogram Set

Histogram Set

Generated 
Histogram Set

Distributed Rendering on Cluster

Rendering 
emulation

Compositing

Neural 
Network

Target GPU

Rendering

Target 
Histogram Set Render Time 

Prediction

Training Data

Figure 1: An overview of our prediction approach. First, we measure local rendering performance of our training hardware, obtaining two
sets of histograms (top-left). We generate an additional set of histograms by scaling our measured data. Then, we use the histograms to
perform rendering emulation on the cluster (top-right), collecting the resulting cluster frame time for training our neural network. We can then
predict cluster performance by measuring a histogram set on the target GPU (bottom-left), and using it as input to the model (bottom-right).

resulting image (I), the data set and its size (D), view parameters (V ),
the node hardware (H) and the cluster size (C). More formally, we
are looking for a model that achieves the following mapping:

(I,D,V,H,C)→ Tc. (1)

In particular, our focus lies on predicting the performance impact of
changes to the node hardware H.

Parallel volume rendering. To develop our prediction technique,
we implemented a parallel volume renderer. It can be classified as a
sort-last renderer [MCEF94], using object-space partitioning to par-
allelize the computation. Using this technique, the rendering of each
frame basically consists of two major phases: local rendering and
inter-node compositing. During the local rendering phase, each node
independently renders its own partition, performing raycasting on
GPUs. During the second phase, inter-node compositing combines
the individual images into the final rendering using the 2-3 swap
compositing scheme [YWM08]. In 2-3 swap, the compositing is
performed in steps, during which nodes exchange and compose data
in small groups of up to four nodes. Initially, each node has a full
image with only its own volume partition rendered on it. As data is
exchanged each step, the image that the node holds shrinks, while its
contents become more complete, i. e. contribution of other volume
partitions is taken into account. And in the end, each processor is
left with a small complete chunk of the final image.

Modeling via neural networks. A distributed renderer running on
a GPU cluster is a complex system exhibiting parallelism at multiple
levels and featuring intricacies like network congestion. In this work,
we chose artificial neural networks for capturing this complexity.
An artificial neural network is a network of interconnected neurons,
in which a signal flows from the input neurons through the whole
network to the output neurons. In the course of this, the neurons
transform the sum of the weighted incoming signals to an output
signal using a nonlinear activation function. While the network is
being trained, input data is “fed” to the network, gradually adjusting
weights of the connections to improve the network’s prediction
accuracy (Sec. 5 for a more detailed discussion).

Our two-level prediction approach. To obtain acceptable results
from a neural network, it needs to be trained with a lot of training
data on a wide range of hardware (we evaluate the benefits of addi-
tional training data in Sec. 6.3). The more general the model should
be, the more hardware, data sets and different output resolutions we
need for collecting the training data to prevent the network from
becoming biased towards one of these factors. However, the number
of GPU clusters available for training is limited, and exchanging all
GPUs of a cluster for extensive testing is unfeasible in practice.

To overcome this, we reformulate our model by splitting it into
two levels similar to the two phases of an object-space distributed
renderer. First, we render an image of a subset of the data on each
node (local rendering). Second, a compositing phase follows, which
exchanges data over the network and assembles the final image on
the CPU. In our setup, the GPU only affects the local rendering
phase. This allows us to abstract this part of the hardware and
application parameters as a local render time Tn, which specifies
how long it takes a node of the cluster to finish its local rendering.
With this, the model from Eq. 1 can be split into two models:

(I,D,V,H)→ Tn (2)

(I,C,Tn)→ Tc (3)

The first model (Eq. 2) represents the local rendering phase, where
image size (I), data set (D), view parameters (V ) and node hardware
(H) define the local render time (Tn). The second model (Eq. 3)
covers the compositing phase, mapping image size (I), cluster size
(C) and local render time (Tn) to the final cluster frame time (Tc).
An advantage of this reformulation is that Eq. 3 does not rely on
information about the hardware used for rendering, in contrast to the
original model (Eq. 1). We therefore can emulate different rendering
hardware on a single cluster by simply stalling the nodes according
to Tn. This allows us to gather more performance measurements
from the cluster by emulating different local GPU rendering times
without actually installing different graphics cards in the nodes (see
Sec. 4). The data gathered this way can then be used for training the
neural network to predict Eq. 3 (see Sec. 5). The model we even-
tually obtain is only tied to the hardware used for compositing and
the network hardware and topology. This means that our model can

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

make meaningful predictions on the basis of local render time mea-
sured on a single node equipped with target hardware. A graphical
overview of our approach is presented in Fig. 1.

4. Emulation of local rendering performance

A key technique for acquiring sufficient training data for the clus-
ter performance model is the emulation of local render times Tn
(Eq. 2). This section covers our approach to suitably representing
local rendering performance via so-called performance histograms.

Motivation and objective. The main issue when taking a ma-
chine learning-based approach to performance prediction for clusters
is that typically only one (or very few) specific hardware configura-
tions are available for obtaining training data. Therefore, the training
data is conceptually restricted to this one configuration, and allows
prediction only in terms of scaling with the number of nodes. To cir-
cumvent this, we propose to remove local rendering from the model
to only capture how communication (hardware and network topol-
ogy) affects the final time, training the model to predict the cluster
performance already given local performance. We represent this lo-
cal performance using so-called performance histograms, which can
either be measured from arbitrary hardware available on individual
machines, or even be generated artificially. This allows us to emulate
different local rendering performance on a single cluster and collect
more training data. Additional training data helps the cluster model
(discussed in Sec. 5) to better learn the dependency between local
rendering performance and overall render time, and prevents the
model from implicitly adapting to particular node performance.

Perf. histograms representing local render time. An emulation
run works similar to real rendering, but during the local rendering
phase, we simply stall the nodes without performing any actual
computation. Once all the nodes have finished waiting, the inter-
node compositing phase proceeds as normal. The nodes exchange
and compose random data, but the amount of compositing and
communication remains unchanged, allowing us to measure how
a given local render time affects the overall cluster performance
(Eq. 3). By varying the local render time, we can simulate rendering
with different combinations of hardware and application parameters,
producing more training data from a single cluster. Note, that during
compositing we always consider the full image, and do not make
any optimizations based on footprints.

The local render time Tn obviously does not represent the time it
takes to render the whole volume on a single node, but rather the time
it takes for a single node of a cluster to render its partition. In our
implementation, we use a static, uniform partitioning of the volume
into bricks, i. e. each partition has an approximately equal number of
voxels. However, render times still can differ significantly between
bricks due to perspective projection and early ray termination. This
results in dynamic load imbalance with different nodes becoming
the bottleneck under different camera orientations.

Thus, instead of using a static, predefined local render time for
each node, we use a representation of node performance that can
capture dynamic load imbalance. To do so, we use a distribution of
local render time, which describes a probability of a node taking a
certain amount of time to perform local rendering during a frame.
This distribution can be expressed as a histogram, which is randomly

0 500 1000 1500
0

0.2
0.4
0.6

Node render time [ms]

Pr
ob

ab
ili

ty

0 500 1000 1500
0

0.2
0.4
0.6

Node render time [ms]

Pr
ob

ab
ili

ty

Figure 2: Performance histograms created from measurements (left),
and artificially generated (right). They represent local rendering
performance of a node of a 24-node cluster for image size 61442

and volume size 10242.

sampled to decide how long a node needs to stall when emulating
local rendering. This way, we can replicate the varying character
of local render time, while still maintaining the same average per-
formance, resulting in a reasonably accurate emulation of volume
rendering performance (Fig. 5b).

Obtaining performance histograms. As outlined in Sec. 3, our
goal is to use rendering emulation to collect more training data
from a single cluster. To perform more emulation runs, we require
more performance histograms that describe the node performance
to be emulated. The histograms can be obtained either by measuring
them on various node hardware, or by generating them artificially,
representing some hypothetical hardware. We explore viability of
both approaches, measuring some histograms on existing hardware
and generating additional histograms to get more training data.

To measure the histograms on existing node hardware, we execute
a run of the volume renderer for each combination of image size,
volume size and cluster size parameters (this influences the size of
the volume partitions). We record the local render time for each
node and frame and sort the measurements into a histogram. By
measuring a histogram for each combination of the parameters, we
obtain a set of histograms that captures performance of the tested
node hardware. Additionally, the histogram approach allows us
to uniformly represent both single and dual GPU configurations.
Two GPUs act together to render the node’s partition, and from
the standpoint of local render time are viewed as a single faster
rendering device. Thus, we can measure two sets of histograms: one
in single GPU mode, and another in dual GPU mode.

Then, we generate modified histograms that are similar to those
measured during actual volume rendering to produce a larger vari-
ation of training data (Fig. 2). This noticably improves the results
of our cluster model (Sec. 6.3). To generate artificial histograms,
we take the values from a histogram previously measured on hard-
ware under the same rendering parameters and perturb it slightly
using a uniform distribution. Without perturbation, all generated
histograms would be the same, making the network biased towards
their particular shape. To define the domain of the histogram, i. e.
the minimal and the maximal local render time, we take the values
from the measured histogram and scale it by a constant, effectively
imitating slower/faster hardware with similar scaling behavior. This
way, we generate two additional sets of histograms. Note, that while
the primary purpose of modifying histograms is to generate a larger
variation of training data, the concept could also be applied to ba-
sically simulate arbitrary combinations of hardware and volume

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

Cluster 

frame time

.. .

Input 

layer

Output 

layer

Hidden layers

.. .

.. .

Input 

features

Figure 3: Our neural network for cluster performance prediction.
It includes two hidden layers of 16 and eight neurons with ReLU
activation function and L2-regularization.

rendering characteristics. However, investigating this more closely
is beyond the scope of this paper and remains for future work.

5. Cluster performance model

In this section, we present our cluster performance model. For this,
we train a neural network using data acquired through our rendering
emulation technique (Sec. 4).

Model input and output. For our model we train a neural network
that has the following input data:

Image resolution (I). Although image size is an application param-
eter that affects local rendering and is implicitly captured in a
performance histogram, it also defines the amount of data ex-
changed over the network, and thus, it is useful for predicting the
cluster frame time.

Cluster size (C). The number of nodes affects both the amount of
data exchanged and the communication pattern.

Performance histogram (Tn). The performance histogram is fed
into the network using two sets of features. The average, mini-
mum and maximum local render time features define the domain
of the histogram, which is a rough estimate of node performance.
Ten bin features represent the distribution of local render time,
which encodes the load imbalance of the rendering application
(Sec. 4). By choosing to use ten histogram bins, we aim to maxi-
mize the resolution of the histogram to provide more data for the
network. However, a further increase of the bin number causes
the histograms to have occasional gaps, introducing undesirable
noise into the input data.

Cluster frame time (Tc). As output, the model provides a predic-
tion for the cluster frame render time. Specifically, we predict the
average frame time recorded over the camera path. The choice of
the target variable is made in line with our emulation technique
(Sec. 4): our histogram-based emulation is designed to match the
average performance (Sec. 6), so by training the model to predict
the average performance of the emulation, we transitively predict
the average performance of actual volume rendering.

(a) Chameleon

500 1,000

104

105

Training set size

M
SE

lo
ss

(l
og

sc
al

e)

MSE

(b) Learning curve

Figure 4: (a) Test data rendering. (b) Learning curve showing
improving prediction accuracy with larger training sets.

Neural network architecture. Our architecture is a series of fully
interconnected layers of neurons (Fig. 3). Each neuron of the net-
work can be viewed as a unit that outputs a nonlinear weighted sum
of the incoming signals. It sums the incoming signals according to
weights of the connections, and then applies the activation function
to the result [Bis95]. The activation function is a nonlinear function
that enables ANNs to model complex nonlinear dependencies. For
our model, we chose the rectified linear unit (ReLU) as activation
function, that allows for faster network training than the also widely
used tanh function [GBB11]:

gReLU (x) = ln(1+ ex). (4)

In our neural network, the first layer is the input, with one neuron
for every input feature (Fig. 3). The last layer is the output and
consists of a single neuron, since the render time is our sole out-
put variable. The rest of the layers are the so-called hidden layers.
Generally, the number of neurons can be varied to control the com-
plexity of the network. Too little complexity typically means that
the network is too simple to represent important relations, while
too much complexity induces the risk of overfitting (where the net-
work becomes so flexible, that it can closely fit every training data
point instead of capturing a general trend). Because a good choice
is very hard to make a priori, we determined the adequate structure
for our network experimentally as follows. We started with a sim-
ple single-layer network, and increased the number of neurons and
layers while the accuracy of prediction was improving. Using this
procedure resulted in a network with two hidden layers of 16 and
eight neurons, since further increase in the network’s complexity
yielded no improvement in accuracy of prediction.

Neural network training. For training the network, we use both
measured and generated histograms (Sec. 6). Each point of the
training data maps a combination of image size, cluster size and a
corresponding histogram to the resulting cluster frame time (Eq. 3).

First, the network is evaluated on the input data, making a left-to-
right pass through the network, called forward propagation. Next,
the back propagation algorithm [RHW85] is used to compute all
the gradients of the network, i. e. how much the loss changes when
altering each weight of the network. The gradients can be used to
update the weights, changing them in the direction of decreasing
loss, effectively performing gradient descent. The loss function
quantifies the accuracy of the network by means of how much the

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

network’s output (yo) deviates from the target output (yt ). In this
work, we employ the mean squared error (MSE) loss (Eq. 5).

MSE =
1
n

n

∑
i=1

(
y(i)t − yo

)2
(5)

To address the aforementioned overfitting issues, a regularization
term is introduced to the loss function, penalizing large network
weights. A regularization parameter λ is used to control the amount
of regularization. For our model, we perform L2-regularization over
all the weights wi j in the network (Eq. 6), automatically choosing
the value of λ during training. Specifically, we train a network for
the values of λ ∈ {10−3,10−2, . . . ,105}, and evaluate it on the
validation data, choosing λ resulting in a smallest MSE loss:

Er = MSE +
λ

2 ∑
i, j

w2
i j (6)

6. Results

In this section, we evaluate the prediction accuracy of our model. We
begin by describing the training data for the neural network. Then
we assess the quality of our prediction in a cluster upgrade scenario,
and also on a different cluster with a similar network configuration.

6.1. Implementation

Our renderer can utilize both one and two GPU(s) per cluster node.
In a case of multiple GPUs, the raycasting results are locally com-
posed among the GPUs. The raycasting uses front-to-back composit-
ing with early ray termination and is implemented in CUDA. Once
all nodes have finished local rendering, the intermediate results are
exchanged among the nodes and composited into the final image
using the 2-3 swap compositing scheme [YWM08]. We used asyn-
chronous operations provided by the MSMPI implementation for
our inter-node communication. The volume is partitioned using a
k-d tree, which implicitly provides ordering for compositing. We
statically assign a partition to each node during initialization, with-
out performing runtime load balancing. If a node has multiple GPUs,
the partition is split further, assigning a sub-partition to each GPU.

With four nodes on a 10243 volume with 61442 image size the
renderer achieved an average frame time of 3545 ms, with 2084 ms
spend in local rendering phase and 1461 ms in compositing. As we
increased the cluster size, the frame time started to decrease, with
compositing having a larger impact on performance. For example,
with 32 nodes the average frame time was reduced to 2081 ms,
where local rendering and compositing took 394 ms and 1687 ms
respectively. Overall, both local rendering and compositing had a
significant impact on the cluster performance, which showed the
necessity of a two-level approach to cluster performance modeling.

For our neural network implementation, we used the Keras frame-
work [Cho15], which in term relies on Theano [The16].

6.2. Collecting training data

We acquired the training data for our model on a 33-node GPU
cluster. Each node was equipped with two Intel Xeon E5620 CPUs,
24 GB RAM, two NVIDIA GeForce GTX 480 GPUs and DDR

InfiniBand. The InfiniBand network had full bisectional bandwidth.
For evaluation, we used a render run consisting of 72 frames while
orbiting the camera twice around the volume on the XZ-plane. We
recorded the local render time for each volume partition and the
overall cluster frame time. We considered every combination of the
following parameters (a total of 594 configurations):

• Image size ∈ {10242,20482,30722,40962,51202,61442}
• Volume size ∈ {2563,5123,10243} (scaled version of the

Chameleon, Fig. 4a, with the original size being 10243 voxels)
• Cluster size ∈ {1,2, . . . 33}

We measured histograms for both single and dual GPU mode for
the 594 configurations mentioned above. Furthermore, from the sets
of measured histograms, we artificially generated two additional
sets. We did this by perturbing the histogram bins with a uniform dis-
tribution and scaling the domain of the histograms by a factor of 0.7.
The rationale behind this factor is that it significantly changes the
local rendering performance, while the result still remains within the
same order of magnitude as measurements. This produces variation
in the training data that helps prediction (Sec. 6.3).

Finally, we used measured and generated histograms to perform
rendering emulation on the cluster, obtaining the data for training
the network (see Fig. 1 for an overview):

• Sm1: Measured-histogram data set, single GPU mode
• Sm2: Measured-histogram data set, dual GPU mode
• Sg1: Generated-histogram data set, derived from Sm1
• Sg2: Generated-histogram data set, derived from Sm2

6.3. Emulated and actual render timings

An important aspect of our approach is that we used rendering emu-
lation to obtain training data for our model (as discussed in Sec. 4),
making it possible to train a full cluster model while measuring only
on a single cluster. The benefit of additional training data can be seen
in Fig. 4b where we depict the learning curve, plotting MSE loss
on the test data against the training set size. The initial steep drop
corresponds to the drastic improvement made after having almost
no training data. (Note, that to show more details a logarithmic scale
is used on the y-axis.) As more training data is added, one can see
an improvement in accuracy on the test data set (the model becomes
better at generalizing to previously unseen data). This shows that the
additional training data acquired through usage of performance his-
tograms and rendering emulation improves the prediction accuracy
of our model and makes the approach practical.

We investigated the accuracy of our distribution-based rendering
emulation technique by comparing its performance to that of an
actual rendering application. For this, we performed a set of normal
rendering runs, recording not only the cluster frame time, but also the
performance histograms. (Fig. 5b). We can see that the performance
emulated with the histograms closely matches the performance of
an actual render run.

To demonstrate the importance of using a distribution of val-
ues for our emulation, we further compared it against a simpler
vector-based technique, which assigns a predefined local render
time to each node. For this, local render times were averaged for
each node over all frames to acquire a local render time vector.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

0 5 10 15 20 25 30

2

4

6

8

10

12

14
·103

Cluster size

Fr
am

e
tim

e
[m

s]

Actual performance
Simulated performance

(a) Simulation using simpler local render time vectors.

0 5 10 15 20 25 30
2

4

6

8

10

12

14
·103

Cluster size

Fr
am

e
tim

e
[m

s]

Actual performance
Simulated performance

(b) Simulation using our performance histograms.

Figure 5: Comparison of actual and simulated performance for 61442 image size and 10243 volume size. 5a: Simulation using local render
time vectors, with each node stalling for the average amount of time taken by this node during an actual rendering run. 5b: Simulation using
performance histograms, with each node sampling the distribution during runtime to determine the amount of time it should be stalling.

0 10 20 30
0

1

2

3
·103

Cluster size

Fr
am

e
tim

e
[m

s] Actual
Predicted

(a) 30722 image size, 10243 volume size

0 10 20 30
0

2

4

6
·103

Cluster size

Fr
am

e
tim

e
[m

s] Actual
Predicted

(b) 61442 image size, 5123 volume size

0 10 20 30
0
2
4
6
8

10
·103

Cluster size
Fr

am
e

tim
e

[m
s] Actual

Predicted

(c) 61442 image size, 10243 volume size

Figure 6: Evaluation of our model in the cluster upgrade scenario for different image and volume resolutions. The model is trained using data
obtained in single GPU mode, and used to predict performance of the cluster with two GPUs per node. All three subplots represent different

’slices’ of the same data, for different fixed values of image and volume size.

Fig. 5a illustrates that the vector-based approach allows imitating
a general performance trend, but has a large deviation from the
actual performance. The vectors capture the static load imbalance,
i. e. nodes having different computational load overall (e. g., due to
some parts of the volume being more opaque than others), but it
does not capture the dynamic load imbalance, which refers to the ef-
fect of nodes having different computational load every frame, with
different nodes becoming the fastest/slowest under different camera
orientations. However, our histogram-based approach covers both
types of load imbalance. Therefore, it has a significantly smaller
performance deviation (Fig. 5b), making it suitable for obtaining
better training data.

6.4. Predicting performance of an upgraded cluster

We evaluated our approach in a cluster GPU upgrade scenario.
Specifically, we investigated benefits of upgrading single GPU nodes
to dual GPU nodes (same model). We trained our model using two
data sets that were obtained from measurements in single GPU mode:
a measured-histogram data set Sm1 and a generated-histogram data
set Sg1. No data collected in dual GPU mode was used for training.
Next, to make a prediction, we collected a set of histograms on the
target hardware, i. e. on a node equipped with two GPUs. This way,

we compared the prediction of the model to the actual rendering
performance, and not just the emulation performance. To test our
prediction, we executed the volume renderer on the whole cluster
running in dual GPU mode, without any rendering emulation, which
enables us to compare the prediction to the actual rendering per-
formance and not just the emulation performance. The results are
presented in Fig. 6, with model achieving an MSE loss of 3.826 ·104

and an R2 score of 0.95. It can be seen that the model works well
both for a smaller and larger number of nodes. For instance, in
Fig. 7b we see how the prediction matches both the steep descent
in the beginning of the graph, and the “tail” of the graph, where
the communication overhead prevents further performance gain.
Furthermore, the model also reproduces the smaller details of the
scaling curve, predicting which cluster sizes are more favorable: in
Fig.6c both the prediction and the actual performance have a local
minimum at even cluster sizes.

6.5. Predicting performance across different clusters

While the main focus of our approach is on predicting the outcome
of upgrading node rendering hardware, it can also be used to predict
the performance of a different cluster having a similar network
configuration. For this application case, the test was performed

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

0 5 10 15 20
0

0.2

0.4

0.6

0.8
·103

Cluster size

Fr
am

e
tim

e
[m

s] Actual
Predicted

(a) 30722 image size, 10243 volume size

0 5 10 15 20
0

0.5

1

1.5

2
·103

Cluster size

Fr
am

e
tim

e
[m

s] Actual
Predicted

(b) 61442 image size, 5123 volume size

0 5 10 15 20
0

1

2

3
·103

Cluster size

Fr
am

e
tim

e
[m

s] Actual
Predicted

(c) 61442 image size, 10243 volume size

Figure 7: Evaluation of our model on a different cluster. The model is trained using data collected on one cluster, and used to predict
performance of a different cluster with similar network configuration.

with data from a different cluster. Therefore, we trained our model
with measured data sets Sm1 and Sm2, using data acquired both in
single and dual GPU mode. The generated data set Sg2 was used
to automatically choose a value of the regularization parameter λ

during training (Sec. 5). For testing, we performed measurements on
a 20-node cluster with two Intel Xeon E5-2640 v3 CPUs, 128 GB
RAM, an NVIDIA Quadro M6000 and FDR InfiniBand (note that
this is a faster network interconnect than in the cluster used for
measuring the training data). As mentioned before, no rendering
emulation was used for the test data, so we compared the prediction
of the model to the actual rendering performance, and not just the
emulation performance.

The model achieves an MSE loss of 7.603 ·103 and an R2 score
of 0.93. It exhibits some jittering when predicting performance on
smaller image and volume sizes, producing an initial spike in Fig. 7a
and 7b. In this case the exact shape of the curve changes between
different executions of the neural network training (due to random
initialization of the network’s weights), but the overall trend remains
the same: on a small number of nodes, the model predicts lower
performance compared to measured results. An explanation to this
deviation is that the GPUs of the training cluster are significantly
older and slower than the ones of the test cluster, and, unlike them,
benefit from parallelization even for smaller image and volume sizes.
Thus, the network has observed a steady decline in frame time, as
we add more nodes to the cluster. However, the test cluster has a
different scalability trend, which results in a large deviation from
the model’s prediction for a small number of nodes.

In all three cases we can see that the model’s prediction has
some bias as the model consistently predicted slower performance
than what was actually achieved. We attribute this deviation to the
different network interconnects, as the lower network bandwidth
of the training cluster is implicitly captured in the model. Hence,
when the model is used to predict performance of a cluster with a
faster network, it consistently underestimates the performance. This
implies, as expected, that our approach is not suitable for predicting
performance of an arbitrarily different cluster. While changes in
rendering hardware are covered by our histogram approach, the
communication/compositing is learned by the model from the data
of the training cluster, and changes in that respect are not accounted
for in any way. However, our results show that we can still yield
reasonable results when applying this approach to clusters with
similar network configuration (cf. Sec. 7).

Layers Neurons Lambda Test score Val. score
1 64 1 10207.09 5949.29
1 64 10 12801.47 6200.41
1 128 0.01 8178.46 6233.40
2 16+8 1 10241.14 6289.66

. . .
2 128+64 0.01 11632.76 14039.96
1 8 1 30517.56 15841.59
3 64+32+16 0.1 17013.04 17065.43

. . .
3 8+4+2 0.01 106556.08 302147.11
3 8+4+2 1 111366.93 303968.76
3 8+4+2 0.1 138458.65 341182.30

Table 1: Comparison of NN architectures. Performance of 75 net-
works ordered by the validation score, best (top) to worst (bottom).

6.6. Evaluation of the neural network architecture

To further validate our empirically chosen neural network archi-
tecture (see Sec. 5) we trained 75 different networks, varying the
number of layers (1, 2, 3), the number of neurons (8, 16 . . . 128)
and the regularization parameter (10−2,10−1 . . .101). In Table 1 we
present the results for best-, medium- and worst-performing net-
works, chosen based on their validation dataset score (average of
10 runs). We can see, that the best-performing networks show simi-
lar results, however our ’16+8’ architecture has significantly fewer
neurons and hence, lower training time. Among the networks with
medium performance, we can find both complex architectures (e.g.
128+64 neurons) with low regularization, and simple architectures
(e.g. 8 neurons) with stronger regularization. The former suffer from
overfitting the data, while the latter are too simple to capture some
of the details of the training data. Finally, the worst-performing net-
works are deeper networks with fewer neurons (e.g. 8+4+2 neurons)
that attempt to reduce the data to a very compact representation
(just 2 neurons), which is insufficient to meaningfully represent the
training data, leading to poor accuracy.

7. Discussion, limitations and future work

In our approach, we used performance histograms as a representation
of node performance. However, these depend on the exact rendering
scenario used for their measurement (camera path). Choosing a
different camera path for performing the rendering may have an

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

effect on the local rendering performance (Sec. 4). Although our
model conveniently abstracts away such details of local rendering,
using a model trained under a certain scenario to predict performance
of a significantly different scenario may potentially worsen the
prediction accuracy. In this case the neural network might not have
observed this significantly different performance histogram, and
might give a less accurate prediction. We performed some testing
of these conditions, predicting rendering performance for a camera
orbiting in a different plane and with a different transfer function,
observing no significant drop in prediction accuracy. However, a
more thorough investigation is left for future work.

Furthermore, our histogram construction technique exerts a limita-
tion on the complexity of the camera trajectory used for performance
measurement. In particular, we construct the histograms by measur-
ing the performance of each node during each frame of a rendering
run and sorting all the measurements into bins. Thereby, we aim
to capture both, the dynamic load imbalance (i. e., nodes having
different local render time during different frames) and the varia-
tion in the overall computational load caused by the volume being
faster to render under certain camera orientations. This results in
mixing together two different distributions: one characterizes load
imbalance among the nodes, the other the overall computational
load, which varies between the frames. For example, if we measured
a histogram in a scenario where camera distance to the volume is
changed significantly, the resulting histogram could be interpreted
by our rendering emulation as “some nodes being slow, some being
fast”, instead of “all nodes being slow during certain frames, and all
nodes being fast during other frames”. Eventually, this would lead to
a different emulated rendering performance, making our method less
accurate. This limitation could be addressed by using a distribution
of distributions, representing local render time distribution during
each frame separately. For emulation, one would first choose a dis-
tribution for the current frame, and then use it to determine the local
render time for each node. However, this extension has two major
challenges that require further investigation: sorting distributions
into a histogram, and finding a vectorial representation suitable for
training neural networks.

Furthermore, our statistical approach would benefit from a larger
amount of systematically gathered empirical data of volume render-
ing performance. This way, one could learn about how render times
are distributed in general and use this information to build more
representative emulations.

For the sake of simplicity, we did not implement any advanced
optimization techniques (empty-space skipping, interleaved render-
ing and composition, etc.) in our volume renderer. However our
approach is in principle capable of handling these methods, and we
would like to investigate its prediction accuracy in future work.

Our performance prediction approach is best suited for support-
ing equipment procurement, allowing cluster performance to be
estimated by only performing measurements on one of its nodes,
without purchasing the whole set of hardware. However, the model
implicitly captures network hardware and topology of the training
cluster and therefore has some limitation in general applicability
and re-usability. Optimally, it needs to be trained on a cluster with
similar network conditions. This presents no problem in the case of
node hardware upgrade, but can become cumbersome when build-

ing a completely new GPU cluster. Possible future extensions are
therefore the emulation of the composition phase performance and
a suitable representation of communication patterns. This could be
used to abstract away cluster-specific details, similar to how we use
performance histograms to abstract away node hardware.

One could argue that an analytical model for estimating local
rendering performance, e. g. in the form of a cost-per-sample calcu-
lation, could be a better approach. However, our usage of histogram
poses the advantage of being possibly a much more universal ap-
proach, in terms of variations in the volume rendering technique or
even applicability to other applications. Furthermore, (GPU) hard-
ware algorithms such as caching, swizzling, 3D memory etc. can be
the cause of significant performance deviations [BFE16].

8. Conclusion

In this paper, we presented an approach to predicting the perfor-
mance of a distributed GPU volume renderer for supporting equip-
ment acquisition scenarios. We proposed a two-level approach to
prediction, distinguishing between node and cluster level. This al-
lowed us to capture complex performance characteristics via a neural
network, without the need to collect training data on multiple clus-
ters with different hardware. By only using measurements from
a single cluster and individual GPUs, our approach is capable of
predicting the performance gain of either upgrading GPUs of an
existing cluster, equipping one node with multiple GPUs, or pur-
chasing a new cluster with a comparable network configuration. For
individual GPUs (i. e., the node level), we generated performance
histograms, which essentially capture local rendering performance.
These performance histograms were then used to emulate the render-
ing equipment of a whole cluster for cluster-level measurement runs.
Using these measurements we trained a neural network to predict
the cluster performance based on local rendering performance.

With our approach, we were able to obtain accurate predictions
for our main application scenario, the upgrade of GPUs in an ex-
isting cluster. Furthermore, when using it in a scenario of a faster,
but similar network configuration, we still achieved an adequate
accuracy with a consistent error reflecting the difference in network
performance. For such application cases, we intend to extend our
model of cluster performance to become network-agnostic. We also
want to gather a wider variety of measurements for various hardware
to improve the model on the local rendering level as well.

Acknowledgments

The authors would like to thank the German Research Foun-
dation (DFG) for supporting the project within project A02 of
SFB/Transregio 161 and the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.

References
[BDP∗10] BAGHSORKHI S. S., DELAHAYE M., PATEL S. J., GROPP

W. D., HWU W.-M. W.: An adaptive performance modeling tool for gpu
architectures. In ACM Sigplan Notices (2010), vol. 45, pp. 105–114. 2

[BFE16] BRUDER V., FREY S., ERTL T.: Real-time perfor-
mance prediction and tuning for interactive volume raycasting. In
Proc. SIGGRAPH Asia 2016 Symposium on Visualization (2016),

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



G.Tkachev et al. / Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition

pp. 7:1–7:8. URL: http://doi.acm.org/10.1145/3002151.
3002156, doi:10.1145/3002151.3002156. 9

[BFJ00] BROWN P. N., FALGOUT R. D., JONES J. E.: Semicoarsening
multigrid on distributed memory machines. SIAM Journal on Scientific
Computing 21, 5 (2000), 1823–1834. 2

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-art in
gpu-based large-scale volume visualization. Computer Graphics Forum
(2015). URL: http://onlinelibrary.wiley.com/doi/10.
1111/cgf.12605/abstract. 2

[Bis95] BISHOP C. M.: Neural networks for pattern recognition. Oxford
University Press, 1995. 5

[BRL∗08] BARNES B. J., ROUNTREE B., LOWENTHAL D. K., REEVES
J., DE SUPINSKI B., SCHULZ M.: A regression-based approach to
scalability prediction. In Proc. ACM/IEEE Supercomputing (2008),
pp. 368–377. URL: http://doi.acm.org/10.1145/1375527.
1375580, doi:10.1145/1375527.1375580. 2

[Cho15] CHOLLET F.: Keras. https://github.com/fchollet/
keras, 2015. 6

[EB16] ESCOBAR R., BOPPANA R. V.: Performance prediction of parallel
applications based on small-scale executions. In Proc. High Performance
Computing (2016), pp. 362–371. doi:10.1109/HiPC.2016.049.
2

[FCS∗10] FOGAL T., CHILDS H., SHANKAR S., KRÜGER J., BERG-
ERON R. D., HATCHER P.: Large data visualization on distributed
memory multi-gpu clusters. In Proceedings of the Conference on High
Performance Graphics (2010), Eurographics Association, pp. 57–66. 2

[GBB11] GLOROT X., BORDES A., BENGIO Y.: Deep sparse rectifier
neural networks. In Aistats (2011), vol. 15, p. 275. 5

[HBC12] HOWISON M., BETHEL E. W., CHILDS H.: Hybrid parallelism
for volume rendering on large-, multi-, and many-core systems. IEEE
Trans. Vis. Comput. Graphics 18, 1 (2012), 17–29. doi:10.1109/
TVCG.2011.24. 2

[HGKS11] HOEFLER T., GROPP W., KRAMER W., SNIR M.: Per-
formance modeling for systematic performance tuning. In State of
the Practice Reports (2011), SC ’11, pp. 6:1–6:12. URL: http://
doi.acm.org/10.1145/2063348.2063356, doi:10.1145/
2063348.2063356. 2

[IdSSM05] IPEK E., DE SUPINSKI B. R., SCHULZ M., MCKEE S. A.: An
Approach to Performance Prediction for Parallel Applications. Springer,
Berlin, 2005, pp. 196–205. URL: http://dx.doi.org/10.1007/
11549468_24, doi:10.1007/11549468_24. 2

[LBdS∗07] LEE B. C., BROOKS D. M., DE SUPINSKI B. R., SCHULZ
M., SINGH K., MCKEE S. A.: Methods of inference and learn-
ing for performance modeling of parallel applications. In Proc.
SIGPLAN Principles and Practice of Parallel Programming (2007),
pp. 249–258. URL: http://doi.acm.org/10.1145/1229428.
1229479, doi:10.1145/1229428.1229479. 2

[LHK∗16] LARSEN M., HARRISON C., KRESS J., PUGMIRE D.,
MEREDITH J. S., CHILDS H.: Performance modeling of in situ ren-
dering. In Proc. High Performance Computing, Networking, Storage
and Analysis (2016), SC ’16, pp. 24:1–24:12. URL: http://dl.acm.
org/citation.cfm?id=3014904.3014936. 2

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.: A sorting
classification of parallel rendering. IEEE Comput. Graph. Appl. Mag. 14,
4 (1994), 23–32. doi:10.1109/38.291528. 2, 3

[MSE06] MÜLLER C., STRENGERT M., ERTL T.: Optimized volume
raycasting for graphics-hardware-based cluster systems. In Proc. EGPGV
(2006), pp. 59–66. 2

[Pet04] PETITET A.: HPL – a portable implementation of the high-
performance linpack benchmark for distributed-memory computers.
http://www.netlib.org/benchmark/hpl/ (2004). 2

[PYR∗08] PETERKA T., YU H., ROSS R. B., MA K.-L., ET AL.: Parallel
volume rendering on the ibm blue gene/p. In Proc. EGPGV (2008), pp. 73–
80. 2

[RHI∗14] RIZZI S., HERELD M., INSLEY J. A., PAPKA M. E., URAM
T. D., VISHWANATH V.: Performance modeling of vl3 volume
rendering on gpu-based clusters. In Proc. EGPGV (2014), pp. 65–
72. URL: http://dx.doi.org/10.2312/pgv.20141086,
doi:10.2312/pgv.20141086. 2

[RHW85] RUMELHART D. E., HINTON G. E., WILLIAMS R. J.: Learn-
ing internal representations by error propagation. Tech. rep., DTIC
Document, 1985. 5

[SIM∗07] SINGH K., IPEK E., MCKEE S. A., DE SUPINSKI B. R.,
SCHULZ M., CARUANA R.: Predicting parallel application performance
via machine learning approaches. Concurrency and Computation 19, 17
(2007), 2219–2235. URL: http://dx.doi.org/10.1002/cpe.
1171, doi:10.1002/cpe.1171. 2

[SSX08] SODHI S., SUBHLOK J., XU Q.: Performance prediction
with skeletons. Cluster Computing 11, 2 (2008), 151–165. URL:
http://dx.doi.org/10.1007/s10586-007-0039-2, doi:
10.1007/s10586-007-0039-2. 2

[The16] THEANO DEVELOPMENT TEAM: Theano: A Python frame-
work for fast computation of mathematical expressions. arXiv e-prints
abs/1605.02688 (May 2016). URL: http://arxiv.org/abs/
1605.02688. 6

[WGL∗15] WU G., GREATHOUSE J. L., LYASHEVSKY A., JAYASENA
N., CHIOU D.: Gpgpu performance and power estimation using machine
learning. In Proc. HPCA (2015), pp. 564–576. doi:10.1109/HPCA.
2015.7056063. 2

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel volume
rendering using 2–3 swap image compositing. In Proc. High Performance
Computing, Networking, Storage and Analysis (2008), pp. 1–11. 3, 6

[ZO11] ZHANG Y., OWENS J. D.: A quantitative performance analysis
model for gpu architectures. In Proc. HPCA (2011), pp. 382–393. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

http://doi.acm.org/10.1145/3002151.3002156
http://doi.acm.org/10.1145/3002151.3002156
http://dx.doi.org/10.1145/3002151.3002156
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12605/abstract
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12605/abstract
http://doi.acm.org/10.1145/1375527.1375580
http://doi.acm.org/10.1145/1375527.1375580
http://dx.doi.org/10.1145/1375527.1375580
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://dx.doi.org/10.1109/HiPC.2016.049
http://dx.doi.org/10.1109/TVCG.2011.24
http://dx.doi.org/10.1109/TVCG.2011.24
http://doi.acm.org/10.1145/2063348.2063356
http://doi.acm.org/10.1145/2063348.2063356
http://dx.doi.org/10.1145/2063348.2063356
http://dx.doi.org/10.1145/2063348.2063356
http://dx.doi.org/10.1007/11549468_24
http://dx.doi.org/10.1007/11549468_24
http://dx.doi.org/10.1007/11549468_24
http://doi.acm.org/10.1145/1229428.1229479
http://doi.acm.org/10.1145/1229428.1229479
http://dx.doi.org/10.1145/1229428.1229479
http://dl.acm.org/citation.cfm?id=3014904.3014936
http://dl.acm.org/citation.cfm?id=3014904.3014936
http://dx.doi.org/10.1109/38.291528
http://dx.doi.org/10.2312/pgv.20141086
http://dx.doi.org/10.2312/pgv.20141086
http://dx.doi.org/10.1002/cpe.1171
http://dx.doi.org/10.1002/cpe.1171
http://dx.doi.org/10.1002/cpe.1171
http://dx.doi.org/10.1007/s10586-007-0039-2
http://dx.doi.org/10.1007/s10586-007-0039-2
http://dx.doi.org/10.1007/s10586-007-0039-2
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1109/HPCA.2015.7056063
http://dx.doi.org/10.1109/HPCA.2015.7056063

