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Abstract—We present an approach for interactively analyzing
large dynamic graphs consisting of several thousand time steps
with a particular focus on temporal aspects. We employ a static
representation of the time-varying graph based on the concept of
space-time cubes, i.e., we create a volumetric representation of
the graph by stacking the adjacency matrices of each of its time
steps. To achieve an efficient analysis of complex data, we discuss
three classes of analytics methods of particular importance in this
context: data views, aggregation and filtering, and comparison.
For these classes, we present a GPU-based implementation of
respective analysis methods that enable the interactive analysis of
large graphs. We demonstrate the utility as well as the scalability
of our approach by presenting application examples for analyzing
different time-varying data sets.

I. INTRODUCTION

The analysis and visualization of graph data [1], [2] is
important for many application fields, e.g., to analyze social
relationships, network traffic, or biological processes. The
increasing amounts of data in many of these areas makes
the visualization even more challenging [3]. This holds espe-
cially for dynamic graphs, which add another data dimension
by incorporating time. Hence, visual analytics methods for
dynamic graphs and networks are of increasing interest [4].

In this paper, we present a visual analytics approach [5],
[6] for the visualization and analysis of large dynamic graphs.
Our approach is especially targeted at the temporal analysis
of graphs with several thousand time steps, e.g., tasks like
detecting temporal patterns with respect to edges and clusters,
or analyzing the temporal evolution of the graph structure. For
this, we discuss three important classes of analytics methods
(data views, aggregation and filtering, comparison) and present
respective techniques. We base our techniques on a space-
time cube representation [7] of the dynamic graph, where
each time step of the graph is represented as an adjacency
matrix. These matrices are then stacked to create a volumetric
representation with time as the additional third dimension. This
representation has the advantage that it is static and preserves
the mental map [8], [9]. Furthermore, it is especially suitable
for the temporal analysis of the graph since all time steps
appear in an ordered sequence next to each other. To enable
the interactive analysis of very large dynamic graphs with
more than a thousand nodes and time steps, we use GPU-based
methods for displaying different graph views, e.g., volume
rendering for a volumetric graph representation.

The main contribution of this paper is the discussion of
different classes of analytics methods for large dynamic graphs,

along with respective methods. We implement and combine
these methods in an integrated application, including a novel
technique using the space-time cube metaphor and volume
rendering, enabling interactive visualization of large dynamic
graphs. Furthermore, our application features a technique to
interactively compare arbitrary long sections of dynamic graphs
against each other. We demonstrate the interplay and usefulness
of the different classes of analytics methods, by means of two
different scenarios: the analysis of a dynamic software call
graph and flight connection data between US airports, both
with more than a thousand time steps.

II. RELATED WORK

Dynamic graphs. Visually analyzing a dynamic graph is
a challenging task due to the continuously increasing size
of graph data in all three relevant data dimensions: vertices,
edges, and time. Various visualization and visual analytics
techniques [5], [6] already exist that deal with dynamic graph
data [4] focusing on either designing visual metaphors for
displaying the dynamic graph in a scalable way or on computing
graph structures evolving over time.

Traditional node-link diagrams are usually less suitable for
showing graphs with a large number of time steps due to the
display space required for a single time step. Therefore, derived
techniques were developed that still use a node-link metaphor
but with a different layout. Burch et al. [10] presented parallel
edge splatting which arranges nodes on parallel axes resulting
in small vertical stripes for each time step. This approach was
later extended by Beck et al. [11] with a concept called rapid
serial visual presentation, showing only a subset of the full
graph in detail, to enable the visualization of more time steps.
Burch et al. [12] developed another technique that reduces
the required display space of parallel edge splatting by using
overplotting of individual time steps.

However, all these approaches cannot solve the issue of
crossing links leading to visual clutter that is inherent to node-
link visualization. Therefore, other approaches are based on
the adjacency list [13] or adjacency matrix [14] representation
of a graph, which make dense graph structures displayable
without visual clutter [15] caused by link crossings. Burch et
al. [16] and Yi et al. [17] make use of matrix representations for
dynamic graphs. They generate a global matrix that indicates
the evolving weight as a line plot or color coded bar chart in
each cell. Those techniques scale well with many time steps,
but not necessarily with respect to many vertices and edges.



Techniques based on small multiples show adjacency ma-
trices of dynamic graphs next to each other, generating a
time-varying visualization of the data [18], [19]. Using such a
visualization, a viewer has to jump back and forth to compare
individual time slices and detect dynamic patterns in the data.
Moreover, showing adjacency matrices side-by-side requires
much screen space. Consequently, the visualization does not
scale to thousands of time steps.

A third option to visualize dynamic graphs based on
adjacency matrices can be obtained by stacking the matrices,
which provides a good overview of evolving structures, if
a suitable vertex clustering or ordering is applied [20], [21].
Stacking matrices generates a time-to-space mapping which
guarantees a high degree of dynamic stability and consequently,
supports the preservation of the mental map [8], [9]. Such a
space-time cube representation can generate a visually scalable
and interactive dynamic graph visualization, in which graph
structures are aligned and can build longish shapes that are
easily identifiable and selectable. This concept has already been
successfully applied in the work of Bach et al. [22]. Schneider
et al. [23] present a similar concept in their work, which
they use for the exploration of dynamic structural connections
in software components. Clustering and ordering techniques
provide insights into the evolution of clusters. However, if the
graph structure behaves chaotically over time, i.e., contains
many alternating or oscillating dynamic patterns, a reasonable
clustering cannot be easily computed.

Inspired by these works, we extended the space-time cube
approaches to allow the analysis of larger data sets and further
facilitate the analysis of large graphs by providing additional
analysis and comparison methods.

Volume rendering. We use volume rendering as the basis of
our dynamic graph visualization approach in this work. While
raycasting induces a comparably high computational cost, it
delivers not only high quality, but also high flexibility as each
ray and even each sample along a ray may be individually
adjusted as desired. Volume rendering is a classic field in
visualization research that is typically used to directly render
data from measurements (like CT scanners) or simulations.
Since the availability of powerful and flexible graphics cards,
GPU raycasting [24] has evolved as the de-facto standard
technique in this context [25]. Beyond the classic application
of raycasting to the visualization of a 3D volume, various
approaches have been presented to map different types of data
to a volume for rendering.

One particular active field in this context is the visualization
of a time series of volumes in a single view. One approach is to
interpret the data as a space-time hypercube and apply extended
classic visualization operations like slicing, projection, or
temporal transfer functions [7]. In this work, we also construct
a space-time cube by stacking the time steps of (2D) adjacency
matrices. For stacks of 2D data, Frey et al. [26] present an
interactive visualization approach for detecting and exploring
similarity in the temporal variation of field data, with a focus
on studying periodic and quasi-periodic behavior. A popular
approach to visualize multiple fields, is to combine them into

a single value and then render the combined volume (e.g.,
Woodring et al. [27] use set operators for combination).
Woodring and Shen [28] also proposed Chronovolumes, a static,
direct rendering technique for time-varying data integrating
all data over time into one volume. Balabian et al. [29] use
temporal transfer functions and compositors to highlight areas
of high change. We also use customized transfer functions in
this work to enable the user to interactively highlight aspects
of interest.

III. BACKGROUND

In our visual analytics approach for large dynamic graphs,
we especially focus on the analysis of temporal aspects and
behavior. Therefore, we decided to use a static representation of
the dynamic graph, because this provides numerous advantages
compared to animation [30]. In the following, we describe
our volumetric representation of dynamic graphs based on
adjacency matrices, which is the core of our analytics approach.

A. Static Volumetric Graph Representation

In this work, we build on the concept of adjacency matrices.
The rows and columns of an adjacency matrix denote the nodes
of the graph. An entry in this matrix defines an edge between
two nodes. In this paper, we use the following convention:
An entry (4,7) at the i-th row and j-th column of the matrix
denotes an edge from the node with index ¢ to the node with
index j. A dynamic graph is then represented by storing an
adjacency matrix for every time step of the graph. Choosing
the adjacency matrix representation has several reasons [20]:

1) It can show large graphs without inducing crossing or
intersecting graphical elements, as it would be the case
for traditional node-link diagrams.

2) We can generate a meaningful volumetric representation
without any layout algorithm and naturally keep the same
layout for every time step.

3) Adjacency matrices are well suited for revealing cluster
structures in graphs.

Inspired by the work of Bach et al. [22] on dynamic graph
visualization and space-time cube approaches [7] in general,
we create a volumetric representation of the graph based on its
adjacency matrices. These concepts have in common that they
stack representations of individual time steps to a new data
structure. In our case, adjacency matrices are 2D structures
which are stacked to incorporate the temporal evolution of the
graph. The resulting 3D matrix represents the full dynamic
graph, where the z- and y-axes represent the nodes, entries in
the plane defined by these axes represent edges (including their
weights), and the z-axis represents time. The basic concept is
illustrated in Figure 1.

B. Matrix Reordering

One issue of adjacency matrices is that their visual appear-
ance strongly depends on the ordering of the nodes. A bad node
order may result in rather noisy visual patterns with entries
spread all over the matrix. A good node ordering shows cluster
structures in the graph and similar columns or rows of the



N

.I\
N

[]
L] l;1 | L)

time

adjacency matrices " l:

|

N
Ly og

Fig. 1: In our static graph representation, 2D adjacency matrices
for each time step of the dynamic graph are stacked to create
a 3D volume, with the third dimension representing time.

matrix grouped next to each other. Therefore, matrix reordering
algorithms play an important role when analyzing graphs with
adjacency matrices. By using algorithms of the boost graph
library [31], we employ three choices of sparse matrix ordering
algorithms: Reverse Cuthill-McKee [32], King [33], and Sloan
ordering [34]. An arbitrary number of consecutive adjacency
matrices may be selected that are taken into account for the
ordering by aggregating them beforehand.

IV. CLASSES OF ANALYTICS METHODS

This work focuses on visualizing large dynamic graphs.
However, while relying on animation for dynamic data is a
popular choice, it has been shown to be ineffective as only a
limited amount of information can be memorized by an observer
[35]. Therefore, we used a (static) space-time representation
for visualizing dynamic graphs as a basic design decision for
our approach. Operating on this representation, we identified
three important classes of techniques that are crucial for the
analysis of large dynamic graphs (Figure 2), especially with
respect to temporal features and behavior:

Data Views. Since large dynamic graphs usually exhibit a
large amount of information covering different aspects of
interest, it is important to offer different perspectives on the
data using distinct views with suitable visualization tech-
niques. In a complex analysis scenario, a single visualization
is often not capable of revealing all interesting aspects.

Aggregation and Filtering. Directly showing large dynamic
graphs with several hundreds to thousands of nodes and time
steps typically results in visual clutter and overloaded visual-
izations. In particular, showing too much information that is
not necessarily relevant to a specific question, may obfuscate
the information of interest. Filtering and aggregation of data
are useful approaches to reduce such issues.

Comparison. The analysis of a single complex dynamic graph
is already challenging in itself. When two or more different
dynamic graphs need to be compared, this typically becomes
a difficult problem to solve using only the methods discussed
so far. Therefore, it is important that comparison is supported
with specifically designed visualizations.

We implemented different methods for these building blocks
in our graph analytics system (see Figure 2). In the following,
we explain these methods for the different classes in detail,
and discuss how they support the analysis of dynamic graphs.

A. Data Views

Depending on the use case and the problem setting, there
might be many different aspects of the graph data that are of
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Fig. 2: Three important classes of analytics methods for
large dynamic graphs. We implemented and discuss respective
techniques, and show their utility with application examples.

relevance. Usually, there is not a single visual representation
that can reveal all these aspects. Furthermore, different types
of visualization techniques might be better suited for different
analysis and exploration tasks. Therefore, we offer multiple
distinct data views to the analyst that reveal different aspects
of the data.

Timeline Plot. We implemented a 2D plot visualization
showing different graph metrics on a timeline (Figure 3a), e.g.,
edge count or matrix attributes such as linear arrangement.
This visualization is well-suited as an overview and to reveal
global temporal patterns, e.g., if the density of the whole graph
changes over time, it is visible in the edge count plotted over
time. Besides showing relevant graph properties, this plot is
also a suitable interface for different interaction and selection
tasks. For instance, the timeline allows us to select individual
time steps, which are also selected or marked in the other views.
Furthermore, the timeline view can also be used to create and
manipulate the split marks for the volume partitioning (see
discussion of volume partitioning below).

Slice View. The previously described timeline plot can
only show strongly aggregated graph properties, such as
the number of edges in each timestep. However, it is not
possible to see details of the graph structure there. To provide
information about individual time steps or nodes of the graph,
we implemented several 2D slice views of the graph volume
(Figure 3b). They allow for an analysis of single time steps or
single nodes, by projecting graph properties on a plane (e.g.,
single or aggregated time steps).

Volume View. With the slice views, it is possible to analyze
single time steps or nodes. However, analyzing the graph
structure and the temporal evolution on a global level is difficult
because it requires to inspect all slices and relate them to each
other. To achieve this, we also include a direct visualization
of the complete graph volume (Figure 3c). It provides two
viewing modes. The first one is a 2x2 tiled view that allows
to see and compare different graph properties or aggregation
levels of the data (see discussion of aggregation levels in
Section IV-B below). If desired, this view can be changed to
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Fig. 3: The GUI of our dynamic graph analysis tool, consisting of (see Section IV-A): (a) timeline plot, (b) 2D slice views, (c)
volume view, (d) volume lens, and (e) color map editor. The list view (f) shows information of selected edges and nodes.

a 1+ 3 view mode with one large view in the center and
three smaller views in the corners. The large view enables a
more efficient exploration of the data, while the smaller views
provide additional context. By simply clicking on the smaller
views, the selected one is enlarged and now shown in the
center. Each view has one dedicated parameter set defining the
visualization, i.e., every view can show the data with a different
aggregation level and color mapping. To support comparison
tasks, camera parameters of all views are synchronized. With
this functionality, different properties of the graph can be shown
at the same time, providing a more comprehensive view on
the data.

Volume Lens. Apart from the possibility to use the four
different views to see various aspects of the data, we also
provide a mouse-controlled lens (Figure 3d). The lens shows
the graph data in the volume view with different visualization
parameters, such as aggregation level and/or color mapping.
For instance, it is possible to show the full graph with a high
aggregation level, to better convey the overall graph structure,
while inside the lens, a lower level is shown to provide a
view on the non-aggregated graph data. Another example for
the usage of the lens is to show the edge weights (via color
mapping) inside, while the lifetime of the edges is shown
outside the lens.

Volume Partitioning. The main focus of our visual analytics
approach for large dynamic graphs lies on the analysis of

temporal aspects. To improve our interaction possibilities in
that regard, we integrate the ability to partition the volume into
sub-volumes along the temporal dimension (see Figure 4). Here,
each sub-volume represents a certain time span of the graph. By
showing only one respective sub-volume, the problems of visual
clutter and occlusion of the graph volume view are reduced.
The volume partitioning is defined by setting split marks in the
timeline plot (Figure 3a). When setting split marks, the volume
gets visually separated in the main view by introducing gaps
between sub-volumes. A user can interactively add, delete, and
move the split marks and thereby adapt the partitioning. We
also offer the option to let our tool automatically set the split
marks based on the graph metric shown in the timeline. For
this, the analyst defines a threshold, and whenever the metric
exceeds this threshold, a split mark is set automatically.
Color Mapping. We visualize certain properties of the
dynamic graph by mapping them to color, e.g., the weights of
the edges. We offer further modes that support the analysis of
the temporal behavior of the graph (see Figure 5), which can
be selected using the color map editor (Figure 3e). Mapping
the temporal dimension to color allows for a better comparison
of the temporal relation of edges, e.g., how long do certain
edges exist. Although this information is also visible in the
third dimension of the volume, the projection to 2D makes a
comparison potentially difficult. The usage of color to explicitly
represent this aspect, mitigates this limitation. Further quantities



Fig. 4: It is possible to split the graph volume into several
sub-volumes, representing different time ranges.

that can be shown with color mapping include, among others,
edge count and edge lifetime, which indicates the total time
an edge exists in the full graph.

Note that, as we use a static (volumetric) representation
for our dynamic graph, the color mapping we employ is
implemented via the well-known concept of transfer functions
from traditional volume rendering. In that regard, it also bears
some similarity to the filtering step discussed in Section IV-B
(color mapping defines color, while filtering steers opacity).

B. Aggregation and Filtering

A direct visualization of the complete graph is usually not
suitable for a detailed analysis. It might be even difficult to
obtain a good overview of the graph, since displaying several
millions of edges results in a very cluttered visualization.
Therefore, it is important to reduce the amount of data presented
to the user. We offer two different approaches for this task,
which are discussed below: aggregation and filtering.

Aggregation. Individual elements can be very small, espe-
cially on the overview level. As a result, there is a high risk that
entries are not visible due to projection and rasterization issues.
Furthermore, aliasing artifacts such as Moiré patterns may
occur. Therefore, we offer several methods for aggregating
the data during a down-sampling process that we employ
to create different resolution levels. Depending on the used
aggregation method, different features in the data are visible.
In our implementation, we offer the following aggregation
methods: min, max, average weight, and density of edges.
Aggregation along the time axis is optional, i.e., not only
neighboring edges but also time steps are aggregated if desired.
In this case, a graph voxel represents multiple edges and time
steps (see Figure 6).

Choosing the right aggregation level depends on the respec-
tive analysis task and the properties of the graph, e.g., how
sparse it is. Therefore, we let the analyst interactively switch
between different aggregation levels. To ease the selection of
a suitable level, we initially present four different levels in the
main view. The analyst can then select the desired level by
clicking on the respective view. Furthermore, two aggregation
levels can be combined in the same view by using our lens
(see Section IV-A), which allows showing the graph volume
with a different aggregation level in the same view.

Filtering. To reduce visual overload and occlusion, it can
be very helpful to filter out edges with specific properties,

(b) edge weight/edge lifetime

(a) time/edge count

Fig. 5: Different visual mappings of dynamic graph properties:
Color mapping of time ((a), left), edge count per time step
((a), right), edge weights ((b), left), the time span each edge
exists in the dynamic graph ((b), right).

e.g., the ones featuring low weights. This allows to focus on
certain aspects of the graph, e.g., edges with high weights. By
changing transparency, it is possible to flexibly explore different
aspects of the data. Technically, this is implemented as transfer
function mapping of our volumetric graph representation (as
discussed in Section IV-A).

C. Comparison

In addition to the volume partitioning and selection, we
provide another modality to analyze temporal aspects of
dynamic graphs by offering a graph difference visualization
(see Figure 9). Essentially, the analyst can select the starting
point, size, and the number of time steps that are compared.
Based on this selection, a visualization of pairwise differences
is presented in a matrix layout. The original graph data is
shown on the diagonal and the differences are shown in the
upper respective lower triangle of the matrix. The upper one
shows the comparison of the existence of edges (i.e., new
edge appeared/disappeared or stayed), and the lower triangle
shows the difference between weights. All views are encoded
with color mapping, allowing to highlight or filter respective
differences. Since slight offsets between time ranges can result
in huge differences, e.g., in case of repeating patterns, our
application allows the analyst to interactively change the
comparison parameters and instantaneously see the outcome
of the comparison.

V. IMPLEMENTATION

We run the computation-intensive parts of our visualization
approach on the GPU, to enable the interactive exploration and
analysis even for large dynamic graphs (potentially featuring
thousands of nodes and time steps). Those parts naturally
include the volume view (rendered with raycasting techniques),
but also the slice views and generation of the aggregation
levels. Matrix reordering is done in parallel on the CPU. For
the volume view, we transfer the stacked adjacency matrices as
a 3D-texture to GPU memory and perform further processing
of the data and generation of the visualization on the GPU
using OpenCL. While our current implementation technically
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Fig. 6: Different aggregation levels (using edge density) of a
software call graph. By showing different levels at the same
time, an analyst can choose a level that provides a good balance
of visibility and coarseness.

limits the size of graph data sets to the available GPU memory,
the use of out-of-core techniques could mitigate this limitation.

For rendering the stacked adjacency matrices, the analyst
may choose between two modified front-to-back raymarching
algorithms with early ray termination. The first is an implemen-
tation of the 3D digital differential analyzer algorithm [36], with
local lighting based on actual voxel surfaces. This method and
lighting enables an analyst to more easily distinguish between
single or isolated voxels and opaque structures, making it better
suited for viewing sparse graphs. The second rendering method
is based on standard raycasting, i.e., we sample the generated
3D-texture with a constant step size along the rays. In that case,
we calculate local lighting based on the gradient of each voxel,
using central differences. This rendering and lighting approach
is more suited to display density distributions, especially in
the case of dense graphs and the usage of transparency.

During raycasting, we map the sampled density values to
color and opacity (through color mapping and filtering) and
finally composite them into pixel colors for display. We use
raycasting as the basis for our 3D visualization approach
because it has several advantages compared to rendering
geometry directly. Regarding performance, volume raycasting
enables us to render millions of dedicated matrix entries at the
same time while keeping interactive frame rates. Compared
to rendering geometry, we do not have to perform front to
back ordering and can easily use transparency for various
visual purposes, such as highlighting items or filtering edges
with specific properties. Additionally, we can display multiple
views with the same camera setup in a single viewport without
generating a significant overhead. Using our application on a
workstation equipped with an NVIDIA TitanX (Pascal) GPU,
an Intel Core i7-6700 and 16GB of RAM, we were able to
render data sets of more than 1000 nodes and 8000 timesteps
(possibly over eight billion edges) interactively, i.e., with more
than 20 FPS on average. Note that volume renderings of dense
graphs are typically generated faster than sparse ones, due
to our usage of early ray termination. However, this highly
depends on the used opacity mapping as well.

VI. APPLICATION EXAMPLES

We demonstrate our approach with two different time-
dependent graph data sets: a flight data set in which the edges
represent the connections between airports (Section VI-A),
and a dynamic call graph representing function calls in a
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Fig. 7: Timeline plot of the flight data set showing the number

of edges per time step. The upper image shows the complete
data set, while the lower one shows data of September, 2001.

Java application (Section VI-B). Based on these examples,
we discuss the suitability of the different classes of analytics
methods (see Section IV) for different tasks in Section VII.

A. Flight Connections

We first look at a data set representing the US domestic
flight traffic in the years 2000 and 2001. The dynamic graph
contains 16,000 time steps and 234 nodes. The number of
edges per time step is shown in the timeline plot in Figure 7.
Immediately noticeable is a big gap in the graph after the 9/11
terrorist attacks. The reason for this is that the complete air
traffic in the US was shut down for around one day after the
attacks. Air traffic recovered in the following days. Besides
this large gap at 9/11, we can see a regular pattern of small
gaps, which occur on a daily basis in the data set. The reason
is that there are several hours each night, when hardly any or
no air traffic occurs at all.

Figure 8 shows the volume view of the flight data set, with
the color map showing time. To reduce clutter and aliasing
artifacts and to reveal the temporal patterns in the graph, we
show aggregation level 2 in the visualization, i.e., aggregating
4 neighboring nodes (the time dimension is not aggregated),
by averaging the weights. Furthermore, the matrix has been
reordered using the Cuthill-McKee algorithm (based on the
first 24 hours of the data set) and the volume was split in
the middle of the time range. The visualization shows that
there is an increase of the edge count in the second year (right
sub-volume). From the structures in the adjacency matrix, we
can also see that the new edges appeared at the boundary of
the matrix. Investigating the data more closely, it shows that
some airports do not have any flights in the year 2000. We
assume that information from these airports were not recorded
before 2001 or new flights have been added.

With our volume lens functionality, we can overlay the
visualization with a different representation of the graph
(Figure 8b). In this case, a different color mapping is shown to
highlight edges with high weight. The edge weight corresponds
to the number of flights per hour on the same route. We can see
that several flights of the same route during one hour mainly
occur at the large airports that have connections to many others,
which are placed in the lower right corner by the reordering.

In Figure 9, we demonstrate the comparison of different
time spans with our graph difference visualization. In this
case, we extracted a dynamic graph for each day from the
complete graph. We then compare eight consecutive time spans
of 24 hours, in order to extract similarities and differences
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Fig. 8: (a) Volume visualization of the complete flight data
set with color showing time. The volume was split at half of
the time range. (b) Close-up of the split area with the lens
overlaying a different color mapping showing the edge weight.

in the flight connections of different days. On the overview,
showing a tiled matrix of differences for all days, the color
mapping reveals on a coarse level between which days large
differences or similarities occur. However, details are hardly
visible, e.g., if there are big changes in the flight connections
of a specific airport. For such detailed analysis, we can enlarge
the comparison of two different days. Here, we compare the
first two days. We can observe that most connections are stable.
However, on Sunday, there are more flights in the morning
compared to the following Monday, where more flights are
scheduled in the evening.

B. Software Call Graph

As a second application, we analyze a dynamic software call
graph (that has previously also been used by Beck et al. [11]).
This is a dynamic graph containing 982 nodes, 32, 259 weighted
and directed edges, and 1,077 time steps. The call graph was
obtained using a Java profiling tool and represents the function
calls during the execution of a drawing application. The graph
captures the following steps during execution: program start,
creation of a new document, drawing a rectangle and a circle,
and finally writing text into the circle. The edge weights are
the execution times of the respective function calls represented
by the edges in the graph. Matrix reordering is not necessary
as the initial ordering is already based on the hierarchy of the
software project which provides respective semantics.

We start our analysis on the overview level (see Figure 10),
using our volume view in four different aggregation levels. We
select the level in the lower left corner for further inspection. In
this level, the graph structure is clearly visible without hiding
too many details due to the accumulation. Looking at the
coarser aggregation level (lower right corner), we can observe
that many details are lost, e.g., it is hard to see that there are
two similar blocks covering longer time spans in the center.

Continuing the analysis with the selected aggregation level,
we can get a general overview of the graph structure and its

temporal evolution. Using this data view, we are able to visually
structure the temporal evolution into several blocks of similar
behavior. Using our volume partitioning implementation, we
can automatically divide the volume into several sub-volumes
based on different graph metrics. In this case, we use the
edge count of each time step to partition the volume. Our tool
allows us to interactively adapt the partitioning by changing,
deleting, or adding split marks. In this example, the automatic
selection works well and only slight modifications are required
to structure the data into four regions of different behavior:
In the first time span, there are many edges that exist only
for a short period of time. Then, there are two blocks with
several long-lasting edges. At the end, the edge count increases
again. However, these edges exist only for a short time period.
Comparing this to the different phases of the program execution
(start, drawing, writing), we can draw several conclusions:
Starting the program and creating a new document requires
a lot more function calls than drawing the different objects.
However, this requires less execution time. Drawing objects
in the second and third phase results in constantly calling the
same functions for a longer time span. Writing text at the end
results again in more function calls for a shorter time span.

The next step in our analysis is the detailed exploration of
these different time spans. For this, we select the respective
sub-volume, which is now shown in the large center view. We
first use the slice view (see Section IV-A) to get an aggregated
view of the edges over time. Interesting graph structures are
visible, e.g., there are almost no edges in the upper right half
of the matrix. The diagonal of the matrix is densely covered,
i.e., many functions are calling neighboring functions in the
hierarchy of the software project. Furthermore, we see an almost
complete line in the center right area, which means that this
function calls many other functions, i.e., this function might be
crucial for the application. Looking up some of these function
calls in the list view reveals that the function “createTools”
calls different “init” functions. We assume that this function
is responsible for creating the drawing tool bar. Rotating the
sub-volume in the volume view reveals that the highlighted
function calls only appear in the first time step, i.e., these
functions are called only once in this time range.

After examining the first time span, we continue our analysis
with the next sub-volume. After selecting the time span via
the timeline plot, the respective sub-volume is now shown in
the volume view in the center. As we have already seen in the
overview, the graph structure is quite different compared to
the first block. The edge count is rather low, but the duration
of most of the edges is quite long. Furthermore, these edges
seem to have a similar duration. We can see from the position
in the matrix volume that some of the calls are from the same
function or the same functions are called, i.e., they are in the
same column respectively row. While all these function calls
have similar durations in the selected time range, it might
be of interest to see whether some of these calls occur more
often than others with respect to the full time range of the
graph. Therefore, we display the global edge life time with the
respective color mapping. Now we can see which functions
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are called most often during the execution of the application.
In this case, they are shown in yellow based on the color map.
We select one of these edges to analyze it (marked area). The
list view tells us that this function is responsible for redrawing
the background of the application. From this information, we
derive that the redraw function is called every time something
changes in the GUI of the application.

Proceeding with the third block, we can see similar structures
as in the previous block. Therefore, we want to compare this
block with the previous block by using our graph difference
visualization (see Section IV-C). As we can see there, almost
the same edges occur in both time spans with the same weights,
in this case representing the execution times. There are only a
few different edges in the center area. By selecting these edges
and using the list view, we can find out that function calls to
“RectangleFigure/displayBox™ disappear and get replaced by
function calls to “EllipseFigure/displayBox”. Hence, drawing
different graphical objects require almost the same function
calls, only a different “displayBox” is used.

VII. DISCUSSION OF ANALYTICS CLASSES

In the following, we discuss the roles of the classes of
analytics methods in the analysis process, based on the
examples presented above.

Providing different data views is crucial to gain insight into
large dynamic graph data, as can be seen in the case of the
investigated flight data set, which contains more than 16,000

time steps. The timeline plot shows the general evolution
of the number of flight connections (edge density), however,
details about the individual connections are not visible. Those
are provided in the volume view that shows the structure of
edges between nodes as well. However, this view may exhibit
occlusion and visual clutter, in particular for more complex
graph data. In this case, aggregation and filtering is required to
remove some of the details on the overview level. These details
can be reintroduced with the interactive lens, which shows a
different data view or aggregation level in a user-specified area.
An (aggregated) slice view can be suitable for this task as well.
Furthermore, it is possible to extract detailed information of
the graph data by selecting individual elements. In case of
the flight data, they represent airports (nodes) or connections
(edges), e.g., the user may obtain the information which airports
have a high number of connections. Using these different data
views and aggregation levels, a comparison of different parts
of the graph would still be tedious, e.g., comparing the flight
connections of different days. For this task, we provide the
graph difference visualization that can visually reveal which
connections remain and which change between days.

In the case of the call graph application example, volume
partitioning is a particularly effective analytics method, due
to the four distinct time ranges with different behavior. This
allows us to select certain sub-regions of the data (filtering), in
this case time ranges, to continue the analysis with a reduced
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compared with our graph difference visualization.

amount of data. However, it can also help using an aggregated
representation of the data. Due to the large number of nodes,
a direct visualization of the unaggregated data would result
in very small structures in the visualization. After selecting a
certain time range of the data, again, different data views can
be used to extract information. Here, the aggregated slice view
can be used to gain additional insight. For instance, which
functions call many other functions, or a suitable color mapping
can be applied to highlight functions that are called most often.
In the example data, the high similarity of the second and third
time range makes it especially difficult to see the differences
between both time ranges. Again, this is efficiently revealed
by our graph difference visualization.

With both examples, we have demonstrated the importance
of the different classes of analytics methods (see Section IV).
Since every visualization technique has its limitation, it is
important to provide different data views. For example, the
volume view provides a visualization of the complete graph but
is prone to occlusion and visual clutter. To analyze the evolution
of the edge count, the timeline plot is often the more suitable
visualization. But even with a visualization view that is adequate
for a specific task, the size of a large dynamic graph may
still lead to a visualization that is difficult to read. Therefore,
aggregation and filtering are crucial to be able to focus on
specific parts or attributes of the data. Finally, comparing
different graphs or various time spans of a single dynamic
graph is an even more complex task. To efficiently handle
respective tasks, we directly support them with a dedicated
graph difference visualization.

VIII. CONCLUSION AND FUTURE WORK

We presented a visual analytics approach that allows for
interactive analysis of large dynamic graphs consisting of
several thousand timesteps. The core of our approach consists
of three classes of analytics methods that we identified as being
of particular importance for efficiently analyzing large dynamic
graphs: data views, aggregation/filtering and comparison. We
implemented and combined these classes in an interactive
visual analytics application that we employ to demonstrate
the usefulness and applicability in the form of two distinct
application scenarios.

Our implementation features a GPU-based volume view
that provides the user with an overview of the graph data
structure, and that is augmented by additional views and
projections of the data. Aggregation is supported in the
different views, while filtering and highlighting can be done by
adapting the color and/or opacity mapping. Finally, we directly
support the temporal comparison of different time spans or
multiple dynamic graphs with an integrated graph difference
visualization. Our application examples demonstrated not only
the scalability of our approach to dynamic graphs with several
thousand time steps, but also show how to temporally analyze
and compare different time ranges of a dynamic graph.

One important goal for future work is to further increase
the capabilities of our tool with respect to the number of
nodes and time steps. Out-of-core concepts might allow the
visualization and analysis of graph data sets that are ten to
one hundred times larger than the ones currently supported.
Another direction of future work is to improve the automatic



determination of suitable visualization parameters, e.g., the
aggregation level and the reordering method.
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