
EG UK Theory and Practice of Computer Graphics (2009), pp. 1–8
Wen Tang, John Collomosse (Editors)

Accelerating Raycasting Utilizing Volume Segmentation of
Industrial CT Data

S. Frey1 and T. Ertl1

1Visualisierungsinstitut der Universität Stuttgart, Germany

Abstract
We propose a flexible acceleration technique for raycasting targeted at industrial CT data and the context of
material deficiency checking. Utilizing volume segmentation that is typically employed for object analysis, GPU
raycasting can be accelerated significantly using a novel data structure that is integrated into the volume to
improve the responsiveness for the interactive, visual inspection of high-resolution, high-precision data.
Our acceleration approach is designed to cause no extra texture lookups and to produce only marginal computa-
tional and storage overhead. Despite the fact that the data structure is integrated into the volume, the graphics
card’s hardware can still be used for trilinear interpolation of density values without producing incorrect results.
The presented method can further easily be utilized in combination with out-of-core approaches and distributed
volume rendering schemes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing Algorithms –
I.3.8 [Computer Graphics]: Applications – I.4.6 [Image Processing and Computer Vision]: Region Growing

1. Introduction

Computed Tomography (CT) is widely used not only for
medical purposes, but also in the field of industrial mate-
rial testing and quality assurance. In this area, the analysis
of component parts is usually accomplished by a combina-
tion of interactive visual inspection (e.g. with a raycaster)
and the (semi-)automatic extraction and comparison of char-
acteristics and geometry. These advanced processing steps
are usually executed on the basis of a segmentation step that
partitions the examined object. The focus of this paper is
to use this segmentation information additionally for ray-
casting acceleration. This is important because even when
using modern high-end GPUs for visual analysis, raycast-
ing of big volumes that barely fit into graphics memory and
beyond still only achieves low frame rates. In this context,
the bottleneck are the texture accesses in the raycasting loop
that are needed to sample the volume, apply a transfer func-
tion, perform lighting and so forth. For this reason, a typical
approach to accelerate raycasting is to reduce their amount
by decreasing the number of raycasting loop iterations per
ray. This is frequently accomplished by only sparsely sam-
pling regions that have no contribution to the pixel color
or that do not contain interesting information (e.g. homo-

geneous regions). In order to provide a basis for these algo-
rithms, volume data needs to be segmented in such a way,
that no critical information is contained in an area that is
only sparsely sampled. For example, when checking an en-
gine block, one is typically not interested in the regions ho-
mogeneously filled with metal, but in blowholes or other
material deficiencies, which should not be in the same seg-
mented region as metal. Like in the example of the engine
block, industrial volume data often consists of only a few
materials. Small but significant changes like blowholes or
bubbles in a structure need to be identified, while large ho-
mogeneous areas are negligible. Therefore the proposed vol-
ume acceleration technique guarantees that deficiencies are
not skipped. Furthermore, no additional texture fetches are
needed in the raycasting loop and only minor computational
overhead is induced compared to a standard raycaster in or-
der to achieve high rendering performance even in areas that
have to be sampled densely. Economic utilization of graph-
ics memory is important as well because modern industrial
CT scanners allow for high-resolution volumes with 16 bit
precision which results in large data sizes. On this account it
is also important that the acceleration algorithm can be com-
bined with out-of-core approaches and distributed volume
rendering schemes.

submitted to EG UK Theory and Practice of Computer Graphics (2009)

2 S. Frey & T. Ertl / Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data

2. Related Work

The GPU raycasting [SSKE05] acceleration method intro-
duced in this paper belongs to the class of techniques that
skip samples in regions that are considered to not contain
critical information. Much work has already been done in
this area in order to be able to handle the high computational
complexity of volume rendering. However, implementations
of previously published techniques on the GPU have certain
shortcomings which the approach presented in this paper tar-
gets to resolve.

One of the first acceleration techniques developed is
empty space leaping, which skips empty or transparent re-
gions of the volume and uses a precomputed data structure
to determine these regions. Realizing this concept, Cohen
and Shefer [CS94] and Zuiderveld et al. [ZKV92] introduced
proximity clouds. Proximity clouds employ a distance trans-
form of the object to accelerate the rays in regions far from
object boundaries. Distance transform values are stored in
place of density values in this empty regions, and therefore
storage is not increased. Freund [FS97] additionally utilized
the fact that medical imaging scanners only produce twelve
bit intensity values for each voxel. So four bits are avail-
able to store leap values besides the density values in re-
gions containing critical data while the whole 16 bit are used
to store leap values in empty regions. This allows for leap-
ing not only in empty space but also in occupied regions.
However, this is not applicable in the context of this pa-
per as modern industrial CT scanners produce 16 bit data.
Yet the main problem with proximity clouds and similar ap-
proaches that were primarily developed for CPUs is that they
have no means to correctly deal with trilinear interpolation
that is usally employed in graphics hardware when sampling
with a GPU raycaster. The interpolation between leap values
and standard density information is undefined and leads to
deceptive results. This can be overcome by doing an extra
lookup to check for leap values, but it is not eligible because
it causes a texture fetch overhead.

Besides techniques that directly integrate skip values into
the volume, numerous approaches employing hierarchical
data structures like octrees were presented [Lev90]. In oc-
trees, non-leaf nodes usually store an entropy metric of its
children to be able to traverse occupied space faster when
the entropy is low. Employed metrics include standard de-
viation [DH92] and the minimum-maximum range of val-
ues [WV90]. Guthe and Straßer [GS01] store in each non-
leaf node a measure of the error that is committed when
its children are not rendered. However, the big flexibility of
these approaches induces a lot of additional texture fetches
for tree traversal on the GPU which can significantly impair
the performance benefit gained from sampling sparsely.

Instead of using a dedicated data structure, [KSSE05] uti-
lize the spatial coherence of consecutively rendered images
to determine the initial sampling point of a ray on the GPU
to skip empty regions.

In this paper, the proposed acceleration technique is dis-
cussed in the context of a standard workflow of material
deficiency checking with industrial CT data. Numerous vi-
sualization and information extraction techniques targeted
at industrial CT data were presented [Hei09] [HMMW03],
including feature extraction and visualization techniques
utilizing homogeneous industrial workpiece segmentation
amongst others. Bullitt and Aylward [BA02] also present a
raycaster that is able to embrace segmented volume data for
enhanced visual display in a medical context. However, none
of these works use the regions gained from segmentation for
acceleration purposes.

3. Basics

In this section, an introduction is given on the basics of
the proposed acceleration approach and its modular imple-
mentation considering the context of industrial material def-
icency checking and advanced processing (Figure 1).

Vanilla Volume Segmented
Volume

Acceleration
Structure

Geometric
Representation Characteristics

Figure 1: Exemplary scheme of volume analysis and ad-
vanced processing for industrial CT data.

3.1. Acceleration Approach

In order to allow for a more responsive interactive visual
inspection by the user, the amount of iterations of the ray-
casting loop is reduced by leaping through volume regions
that do not contain information of interest. These so-called
homogeneous regions are coherent and contain voxels with
density values in a certain scope called segmentation range.
They are identified in a fully automatical segmentation step
that can be configured by the user according to his interests.
After that, for each region leap values are determined, which
denote how many samples can safely be skipped by a ray
without leaving the region so that no tiny critical areas like
blowholes can be missed.

In order to avoid additional lookups for leap values, a sam-
ple value requested from the volume texture can either be a
density or a leap value. This consequently requires the ac-
celeration data structure to be integrated into the volume. To

submitted to EG UK Theory and Practice of Computer Graphics (2009)

S. Frey & T. Ertl / Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data 3

assure that no leap voxels can be mistaken for density voxels
and vice versa, the most significant bit of each voxel value is
reserved for classification.

The integration of the data structure into the volume leads
to another issue: trilinear interpolation must exclusively be
used between density voxels as the result is undefined when
leap voxels are involved. Thus interpolation needs to be
switched off when necessary and a nearest neighbor access
scheme must be used instead. This is triggered using a layer
of voxels called guards that enclose the leap voxels of their
region. When passing through these guards from the outside,
the interpolation mode is switched to nearest neighbor. Tri-
linear interpolation is switched back on again when first en-
countering a voxel that does not belong to the current region.
A region voxel is either a leap voxel containing a skip value
or a guard voxel containing the regions average density (Fig-
ure 2).

Stand-Alone Voxel Boundary Voxel Guard Voxel Leap Voxel Nearest-
Trilinear- Sample

Figure 2: Two rays passing a small region. The right one
leaps and the associate leap value is displayed by the big
circle around the respective leap voxel. Note that boundary
voxels do not belong to a region and are not modified in
value or used in the actual raycasting, but only their position
is utilized for efficient leap value calculation.

3.2. Modules

The components needed for the proposed acceleration ap-
proach are split into modules for enhanced flexibility. The
first step for creating the acceleration data structure is the
Region Segmentation that seperates the volume into regions.
After that, the Classification of Region Voxels is executed to
determine whether a voxel is a guard voxel or a leap voxel.
Finally, the Determination of Leap Values computes for each
leap voxel how many samples can safely be skipped. The
Volume Rendering Core extends a standard raycaster with
the functionality required to utilize the integrated data struc-
ture for leaping in regions.

4. Building the Data Structure

In this section, the modules are discussed that are employed
for the construction of the data structure: region segmenta-
tion, classification of region voxels and the determination of
leap values.

4.1. Region Segmentation

The basis for the proposed acceleration approach is the seg-
mentation of the volume in homogeneous regions. A typ-
ical criteria for segmentation is the maximal range of val-
ues present in a region, but often also more specialized con-
straints are applied when prior knowledge about the data is
available. This way, the user can focus on areas he considers
as critical.

In this work, we use a fully automatic variant of the 3D
flood fill algorithm, but any region segmentation procedure
could be used as well like semi-automatic histogram-based
methods. Every voxel in the volume that does not already
belong to a region is considered as a potential seed point and
attempts to grow. Which voxels are added to the region is
controlled by user-defined region criteria. Voxels that were
considered for a region but did not meet these criteria are
saved in a boundary list that finally forms a one voxel thin
layer around the region. This list is subsequently used for
leap value determination.

4.2. Voxel Classification

Density values are sampled with trilinear interpolation, but
there is no interpolation allowed between leaping and den-
sity values as this leads to undefined results. It is thus critical
for the proposed acceleration technique that no leap voxel
can be reached without switching to nearest neighbor in-
terpolation. In our technique, this is effected when the ray
collects exactly the same density value for two consecutive
samples. This provides an indication that guard voxels have
been passed and leap values might be sampled in the next
step. Guard voxels contain the average value of the region
and are situated in a layer around the leap voxels at the bor-
der inside of the region (Figure 2). The thickness of the layer
depends on the maximum step size that the user wants to
sample the volume with. Before the actual voxel classifica-
tion, a list of neighborhood voxels is compiled based on this
standard sampling distance. The list includes the relative co-
ordinates of surrounding voxels that have to be checked for
classification. If at least one of them does not belong to the
region, the considered voxel is a guard voxel, otherwise it is
a leap voxel (Listing 1).

The time complexity for the classification of all voxels in
a region is O(r · s3) with r denoting the amount of region
voxels and s being the maximum user-defined standard step
size, that is typically in the scale of the distance between two
side by side voxels.

submitted to EG UK Theory and Practice of Computer Graphics (2009)

4 S. Frey & T. Ertl / Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data

for r in regionVoxels
// voxel classification
leap = true
for n in neighborList()

if r+n not in regionVoxels
leap = false

// leap value determination
if leap

d = nearestD(boundaryVoxelTree, r)
vol[r+n] = d | 0x8000

else //guard
vol[r] = regionVal & 0x7fff

Listing 1: Integrated voxel classification and leap value de-
termination.

4.3. Determination of Leap Values

The values of the voxels classified as leap voxels are deter-
mined in this module. This could be done analogously to the
voxel classification with a neighbor list by walking from the
considered voxel spherically to the outside until a voxel is
found that does not belong to the region and the distance
to this voxel would be the leap value. While this is a good
method for the classification as only a small and fixed dis-
tance has to be covered, this is very inefficient especially for
large leap values, as potentially all region voxels have to be
visited.

We employ a much more efficient technique that utilizes
the so-called boundary voxels, a one voxel thin layer around
the volume which is generated in the segmentation step. By
organizing the boundary voxels in a kd-tree, the leap value of
a considered voxel can efficiently be determined by a nearest
point request (Listing 1). The complexity of this technique is
O(r · log2(b)) with b denoting the amount of boundary vox-
els, which again is in O(r

2
3). This is derived from the approx-

imation of the region as cuboid or ellipsoid, whose volume
is in O(e3) (with e3=̂r) and whose surface is in O(e2) (with
e2=̂b) regarding the one-dimensional extent e. We measured
that most of the total preprocessing time is spent on kd-tree
nearest neighbor requests using this approach. In order to
overcome this bottleneck, we developed a modification that
does not calculate optimal leap values, although they are
usually almost as good, but that cuts down the preprocess-
ing time significantly. Note that the actual leap values must
only be underestimated, as an overestimation would allow a
ray to leap out of volume and thus potentially skip critical
data.

The main idea is that a leap value is not only computed
for a single voxel but that it can be reused for a whole group
of voxels around a so-called center voxel. Leap values for
group voxels are applied by subtracting the leap value de-
termined for the center voxel with the distance of the con-

for r in regionVoxels
// check whether voxel has already been classified
if todo[r]
. . .

if leap
// voxel becomes center voxel with certain probability
if random(probability)

d = nearestD(kdtree, r)
// determine the absolute radius of a voxel group
maxRadius = min(relLeap∗d, d − guardDist)
// apply leap values to group voxels
for n in longNeighborList

if len(n) > maxRadius
break

todo[r+n] = false
vol[r+n] = max(vol[r+n], (d−len(n)) | 0x8000)

else
vol[r] = guardDist | 0x8000

. . .

Listing 2: Leap voxel group acceleration extension for leap
value determination.

sidered group voxel to the center voxel. All visited vox-
els are thus implicitly classified as leap voxels and not ex-
plicitly classified or considered as center voxels afterwards.
However, they can be part of another voxel group in which
case the maximum of the already applied and the newly
calculated leaping value is taken. It needs to be guaran-
teed though, that no potential guard voxels belong to such
a group, as a voxel could be falsely classified as a leap
voxel this way, and this would not be corrected in the fur-
ther course of the algorithm. This is why a voxel group can
only be spread up to a certain distance to the boundary (List-
ing 2). However, voxels that are classified as leap voxels only
become center voxels with a certain, user-defined probability
and are otherwise assigned a minimum leap value. Another
option for fine-tuning is the sphere radius that is defined rela-
tive to the center voxel leap value in which voxels are consid-
ered as group voxels. In general, the bigger the center voxel
probability or the smaller the relative radius is the better are
the leap values but the more time is consumed by the classi-
fication and especially the leap value determination.

Overall, this modified version reduces leap value deter-
mination time significantly because the amount of nearest
neighbor requests is reduced from O(r) to O(3

√
r) for a group

voxel radius in order of the region size. Taking into account
that every voxel is at most looked at a constant number of
times (depending on the maximum group voxel radius) and
is thus in O(r), this leads to the total complexity of the tech-
nique O(3

√
r · log2b+ r).

Note that only isotropic leap values are considered with
this module, but directional leap values could also be gen-

submitted to EG UK Theory and Practice of Computer Graphics (2009)

S. Frey & T. Ertl / Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data 5

while t < tmax
// Take a sample
pos = eyePos + t∗rayDir
sample = tex3D(volTex, condNearest(pos, homReg))
// Calculate the leap value
leap = ((sample & 0x8000) == 0x8000)
leapValue = leap ? decLeapValue(sample, ...) : stdStep
// Get color for the sample and composit
col = tex1D(transTex, leap ? oldSample : sample)
col.w = 1− (1− col.w)min(leapValue,tmax−t)

sum.xyz += sum.w∗col.w∗col.xyz
sum.w ∗= (1−col.w)
// Change ray mode and save sample
homReg = (sample == oldSample) || leap
oldSample = leap ? oldSample : sample
t += leapValue

Listing 3: Pseudocode of the raycasting loop of the acceler-
ated GPU renderer.

erated and encoded with minor modifications leading to a
more optimal leaping behavior of the ray at the cost of more
time-consuming preprocessing.

5. Leaping using the modified volume

The integrated acceleration structure computed in the pre-
processing steps can be used by the raycaster presented in
this section in order to achieve significant speedups.

5.1. The Leaping Kernel

To be able to use the integrated data structure, a standard
raycaster needs to be extended (Listing 3). It has to check
whether a sample has potentially been taken from a region
because it then has to switch the trilinear interpolation to a
nearest neighbor address scheme. A sampling position is ex-
actly then considered to be in a region if the ray either just
leaped or consecutively sampled two identical density val-
ues (guard voxels). The ray is considered to have left a re-
gion when a sampled density value is not equal to the guard
voxel’s value that was retrieved when entering the region.
When a sample is taken in a region, the sample value has to
be classified as leap or density value using the most signif-
icant bit. In case of a leap value, the ray parameter must be
added to the leaping value and correctly calculate the result-
ing color addition of the leaping step. Here, the opacity has
to be corrected depending on the length of a leap [EHK∗04].

Note that the leap value determination did not take volume
boundaries into account as no boundary voxels were created
even though naturally the region ends there. This allows for
big leap values at the boundary of the volume, but it also

means that leaps out of a volume are possible. This has to
be accounted for to handle occupied regions at boundaries
correctly. In order to assure that the calculated color is cor-
rect, the maximum leap value used for color calculation is
trimmed to the exit parameter of the ray.

5.2. Supporting Slicing, Out-of-core and Distributed
Raycasting

With no modification to the data structure and only mi-
nor modifications to the raycasting kernel, the proposed ac-
celeration algorithm can be combined with slicing, out-of-
core approaches and distributed volume rendering schemes
[WGS04] to allow for the visualization of huge volumes
exceeding the graphcis cards memory. We discuss the nec-
essary modifications at the example of distributed raycast-
ing approaches with object space partitioning [MSE07], that
render volume blocks independently and finally blend the
resulting images in a compositing step.

In contrast to the standard algorithm, the ray has to start
as if it was inside a region with the nearest neighbor access
scheme, as it is possible that the first sample taken is already
in the context of leaping values. To check that, two samples
with a standard step size are taken. If both sample values
indicate an entering through guard voxels or if one of these
samples contains leap values, the algorithm simply continues
as usual. Otherwise, the ray starts over again like normally
with trilinear inperolation switched on.

In the special case that a volume brick is completely inside
a region, and thus the ray never hits a guard voxel and the
density and thus the color information never get available, it
sets a flag and writes out its length inside the brick respective
to the standard step size instead of the color. The color for
that brick pixel is then determined after the raycasting and
before the compositing step. The color value of each sam-
ple along the ray is retrieved by a transfer function lookup
with the average density of the concerning region and apply-
ing the amount of steps taken like in the raycasting kernel
for leap values. What region the ray went through can effi-
ciently be identified by taking any voxel that was visited by
the ray and doing a lookup in a map that matches voxels with
regions.

6. Volume Analysis for Deficiency Checking

The proposed raycasting acceleration approach fits conve-
niently into the standard workflow of volume analysis. Vol-
ume segmentation is used for both raycasting acceleration
as well as for advanced processing and further helps the user
with the visual exploration of the data set. He can select in-
teractively whether he wants to see only (non-)region voxels
or a mixed view. In addition, different transfer functions can
be applied for voxels in and outside of regions. This enables
the user for example to concentrate on inhomogeneous areas
which are especially interesting when checking for defects.

submitted to EG UK Theory and Practice of Computer Graphics (2009)

6 S. Frey & T. Ertl / Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data

Volume segmentation can further be used for the auto-
matic extraction of characteristics without much additional
effort. This way, characteristics like the volume, the surface
area, the compactness, etc. of a region can be calculated. Ad-
ditionally, the amount of holes in a region can easily be de-
termined by flood filling its boundary voxels and counting
the amount of not connected subsets. Using the segmenta-
tion, also a geometric representation can be extracted effi-
ciently using a modified marching cubes algorihm. Instead
of the whole volume, only the boundary voxel layer has to
be visited to extract a geometric isosurface that is confor-
mant with the volume segmentation.

The described approaches can efficiently be employed for
random checking a series of components for certain types
of defects. Region criteria are chosen once for a reference
component and reused throughout the tests for automatical
segmentation and subsequent characteristics extraction and
comparison. A geometric representation can further be con-
structed based on the segmentation to support visual inspec-
tion and characteristics comparison as well as to provide in-
put for advanced processing like a FEM simulation.

7. Results

We tested our approach on a machine equipped with an In-
tel Core2 Quad CPU 2.4 GHz, 4 GB of RAM and a NVIDIA
GeForce GTX 280. We used a data set provided by our in-
dustry partner as well as publicly available data [Roe]. The
publicly available data sets are the toy car (559× 1023×
347), the engine (2563) and the ellipses (2563). They are
relatively noise free, materials have homogeneous values
and transitions can clearly be distinguished. For providing
a more challenging scenario, we further used the Zeiss512
(5123) and the Zeiss768 (7683) data set from our industry
partner. They were reconstructed from the same noisy x-ray
images without any smoothing, filtering or post-processing
applied.

7.1. Preprocessing

We tested the performance of generating the acceleration
structure at the example of the Zeiss512 data set with varying
segmentation ranges, group voxel radii and probabilities in
a series of 125 measurements. The classification of the vox-
els and the determination of the leap values utilize four CPU
cores using OpenMP while the region segmentation employs
a single core only.

Without the center voxel modification, guard voxel clas-
sification takes five minutes and leap value determination
one hour. When employing the modification, the time it
takes for both tasks combined is reduced significantly to ap-
proximately 2.5 minutes and slightly varies with different
group voxel radius and probability settings as well as the
segmentation range. Contrary to the voxel classification and

leap value determination, our exemplary region segmenta-
tion algorithm heavily depends on the segmentation range
and takes from 1.5m for big segmentation range up to one
hour for a tiny segmentation range.

7.2. Raycasting Acceleration

The leaping as well as the standard raycasting kernel were
implemented using CUDA. The performance was measured
for different region segmentation ranges with fixed center
voxel probability 0.25 as well as fixed group voxel radius
0.25. The impact of different group voxel radii on the actual
leap values is shown in Figure 3.

It can be seen from the rendering results in Figure 4 that
the tested data sets benefit significantly from enabled leap-
ing. Even with the very noisy Zeiss data set, a big speedup
can be observed even when only considering a region range
of only 3% or 7% with virtually no visible difference com-
pared to a standard raycaster. It can also be seen in the di-

Figure 4: The average leap values and thus the raycast-
ing performance increase with a bigger region voxel value
range. Speedup compared to standard raycaster noted.

agram, that the segmentation range has a huge impact on
the rendering performance as it influences how large regions
grow, which again affects the leap values. However, an in-
crease of segmentation range has different effects for dif-
ferent volumes. This is due to the fact that the additional
range needed for a substantial increase of the regions might
be much larger in one data set than in the other. For exam-
ple the engine data set consists naturally of very homoge-
neous regions and distinct transitions, so that the segmenta-
tion does not vary much with increasing value ranges and the
maximum leap potential is nearly already reached with a low
range. Likewise, the visible difference between two render-
ings of the same volume with different range values is big or
small depending on the data set. For the tested data sets, the
results of the standard raycaster and the accelerated raycaster
are virtually identical for a small segmentation range. How-
ever, big ranges potentially lead to significant differences de-
pending on the data set (Figure 5).

submitted to EG UK Theory and Practice of Computer Graphics (2009)

S. Frey & T. Ertl / Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data 7

Figure 3: Visualization of the toy car dataset and its datastructure. Left: Top view with the accelerated raycaster. Right: Volume
slice featuring the integrated acceleration structure for the group voxel radii 0.25, 0.5 and 1.0 from left to right. Blue denotes
leap values and green density values. A higher color intensity means larger leap or density values respectively.

Figure 5: A big segmentation range potentially but not com-
pulsively results in a significant loss in visual detail (ellipses,
Zeiss768 and toy car data sets, each with a region range of
3% at the top and 20% at the bottom).

7.3. Volume Characteristics

For evaluating the component feature extraction, we counted
the number of regions in a data set resulting from volume
segmentation and calculated exemplarily for the biggest oc-
cupied (non-air) region its relative volume, the number of
small holes it contains as well as its compactness employing
the isoperimetric quotient s3

v2 as shape factor with s being the
surface area and v denoting the volume of the region (Table

1). The smaller the shape factor is, the more compact is a
region, with the minimum being 36π for a sphere.

Volume Biggest Occupied Region
#Regions Vol. Shape Factor #Holes

Toy Car 21 26% 97659 154
Engine 8 30% 49554 407
Ellipses 5 91% 139 126
Zeiss512 23 26% 97659 18015
Zeiss768 32 24% 228052 31248

Table 1: Volume characteristics extracted on basis of a seg-
mentation range of 0.1. Vol. denotes the ratio of the regions
voxels to the total amount of non-air voxels.

Segmentation is also used to enhance visual analysis by
excluding large homogeneous regions from the visualization
and therewith focussing on small structures like defects (Fig-
ure 6). Also utilizing the segmented volume, a geometric
representation can be extracted (Figure 6) by using a modifi-
cation of a CUDA marching cubes implementation [NVI08].

8. Conclusions and future work

We proposed a flexible acceleration technique for raycasting
based on volume segmentation that is targeted at industrial
CT data and presented how it fits in the workflow of de-
ficiency checking and advanced processing. Our approach

submitted to EG UK Theory and Practice of Computer Graphics (2009)

8 S. Frey & T. Ertl / Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data

Figure 6: Left: Triangles extracted from the Zeiss512
dataset. Right: Only voxels are displayed that do not belong
to any region. Besides the noise in the data set, several areas
with a different density than the surrounding material (i.e.
green and purple) get visible that might be defects.

leads to a significant speedup with only moderate prepro-
cessing time required. While the targeted field of application
is material checking, it is well-suited for all other areas with
a demand in high rendering performance. For applications
in which the segmentation parameters are not driven by the
analysis, they can be configured solely to achieve the desired
fluent frame rates with an acceptable loss of detail.

For future work, we intend to take the ray direction into
account and to allow for non-linear or region-dependant leap
values by exploiting the transfer function fetches. Imple-
menting our acceleration technique in a distributed raycaster
for further evaluation also remains for future work.

Acknowledgements

The authors would like to thank the Deutsche Forschungs-
gesellschaft (DFG) for financial support within the Cluster
Of Excellence in Simulation Technology at the Universität
Stuttgart. The Zeiss data set is courtesy of Daimler AG.

References

[BA02] BULLITT E., AYLWARD S. R.: Volume render-
ing of segmented image objects. IEEE Transactions on
Medical Imaging 21 (2002), 200–2.

[CS94] COHEN D., SHEFFER Z.: Proximity clouds - an
acceleration technique for 3d grid traversal. The Visual
Computer 11 (1994), 27–38.

[DH92] DANSKIN J., HANRAHAN P.: Fast algorithms for
volume ray tracing. pp. 91–98.

[EHK∗04] ENGEL K., HADWIGER M., KNISS J. M.,
LEFOHN A. E., SALAMA C. R., WEISKOPF D.: Real-
time volume graphics. In ACM SIGGRAPH 2004 Course
Notes (New York, 2004), ACM, p. 29.

[FS97] FREUND J., SLOAN K.: Accelerated volume ren-
dering using homogeneous region encoding. In VIS ’97:
Proceedings of the 8th conference on Visualization ’97
(Los Alamitos, CA, USA, 1997), IEEE Computer Soci-
ety Press, pp. 191–ff.

[GS01] GUTHE S., STRASSER W.: Real-time decompres-
sion and visualization of animated volume data. In VIS
’01: Proceedings of the conference on Visualization ’01
(Washington, DC, USA, 2001), IEEE Computer Society,
pp. 349–356.

[Hei09] HEINZL C.: Analysis and visualization of indus-
trial ct data, 12 2009.

[HMMW03] HUANG R., MA K.-L., MCCORMICK P.,
WARD W.: Visualizing industrial ct volume data for non-
destructive testing applications. In VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03) (Washing-
ton, 2003), IEEE Computer Society, p. 72.

[KSSE05] KLEIN T., STRENGERT M., STEGMAIER S.,
ERTL T.: Exploiting Frame-to-Frame Coherence for Ac-
celerating High-Quality Volume Raycasting on Graph-
ics Hardware. In Proceedings of IEEE Visualization ’05
(2005), C. Silva and E. Gröller and H. Rushmeier, (Ed.),
IEEE, pp. 223–230.

[Lev90] LEVOY M.: Efficient ray tracing of volume data.
ACM Trans. Graph. 9, 3 (1990), 245–261.

[MSE07] MÜLLER C., STRENGERT M., ERTL T.: Adap-
tive Load Balancing for Raycasting of Non-Uniformly
Bricked Volumes. Parallel Computing, Special Issue on
Parallel Graphics and Visualization 33, 6 (June 2007),
406–419.

[NVI08] NVIDIA: NVIDIA CUDA SDK code samples.
http://developer.nvidia.com/object/cuda.html, 2008.

[Roe] ROETTGER S.: The volume library.
http://www9.informatik.uni-erlangen.de/External/vollib.

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T.,
ERTL T.: A Simple and Flexible Volume Rendering
Framework for Graphics-Hardware–based Raycasting. In
Proceedings of the International Workshop on Volume
Graphics ’05 (2005), pp. 187–195.

[WGS04] WANG C., GAO J., SHEN H.-W.: Parallel Mul-
tiresolution Volume Rendering of Large Data Sets with
Error-Guided Load Balancing. In Eurographics Sym-
posium on Parallel Graphics and Visualization (2004),
pp. 23–30.

[WV90] WILHELMS J., VANGELDER A.: OCTREES
FOR FASTER ISOSURFACE GENERATION. Tech. rep.,
Santa Cruz, CA, USA, 1990.

[ZKV92] ZUIDERVELD K., KONING A., VIERGEVER

M.: Acceleration of ray-casting using 3d distance trans-
forms. In Visualization in Biomedical Computing II, Proc.
SPIE 1808 (1992), pp. 324–335.

submitted to EG UK Theory and Practice of Computer Graphics (2009)

