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Abstract. This paper evaluates how autoencoder variants with different
architectures and parameter settings affect the quality of 2D projections
for spatial ensembles, and proposes a guided selection approach based
on partially labeled data. Extracting features with autoencoders prior
to applying techniques like UMAP substantially enhances the projec-
tion results and better conveys spatial structures and spatio-temporal
behavior. Our comprehensive study demonstrates substantial impact of
different variants, and shows that it is highly data-dependent which ones
yield the best possible projection results. We propose to guide the se-
lection of an autoencoder configuration for a specific ensemble based on
projection metrics. These metrics are based on labels, which are however
prohibitively time-consuming to obtain for the full ensemble. Address-
ing this, we demonstrate that a small subset of labeled members suffices
for choosing an autoencoder configuration. We discuss results featuring
various types of autoencoders applied to two fundamentally different en-
sembles featuring thousands of members: channel structures in soil from
Markov chain Monte Carlo and time-dependent experimental data on
droplet-film interaction.

Keywords: Feature Learning · Machine Learning · Dimensionality Re-
duction · Clustering · Ensemble Visualization.

1 Introduction

Driven by technological advances, scientific ensembles of increasing size are ob-
tained from simulations and experiments. They offer significant potential for
new insights in various domains across engineering and natural sciences, but their
analysis induces many challenges [35]. Dimensionality reduction (DR) techniques
have been successfully applied for analyzing large sample collections (e.g., [16]),
and especially 2D projections widely used to provide a visual impression of the
data distribution [22]. However, when applied directly to spatial data, the ex-
pressiveness of projection techniques like Uniform Manifold Approximation and
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Projection (UMAP) [23] is generally negatively impacted by the high dimension-
ality and hence sparsity of the data.

This work explores the usage of unsupervised feature learning techniques to
produce more suitable data representations for DR of spatial data, and specifi-
cally, for 2D projections. We investigate standard and sparse autoencoders (AE),
as well as more advanced versions such as Sliced-Wasserstein and β-Variational
autoencoders (SWAE and β-VAE). Our study with two different scientific en-
sembles demonstrates that they improve expressiveness in comparison to directly
projecting the spatial data via UMAP. However, it also shows that the perfor-
mance of autoencoder variants is highly data-dependant, i.e., it is not clear a
priori which one to choose to adequately capture what is of interest in the data.
To address this, we propose to employ complementary metrics quantifying the
quality of a projection and selecting a specific autoencoder variant based on
Pareto efficiency. These metrics assess the quality of the projection based on
labels (generally provided by an expert). While labels can be prohibitively ex-
pensive to obtain for the full ensemble, we demonstrate that a small subset of
labeled members is already sufficient to yield expressive results.

We consider (1) the study of several autoencoder variants for dimensional-
ity reduction with diverse scientific ensembles, (2) the evaluation of projection
metric stability for small partial labelings, and (3) the Pareto-efficient selection
of a variant on this basis to be the main contributions of this work.

2 Related Work

Ensemble visualization. The analysis of ensemble data generally is a challeng-
ing visualization task [24]. Potter et al. [27] as well as Sanyal et al. [31] proposed
early approaches to study climate ensembles, while Waser et al. [36] described
a system for the interactive steering of simulation ensembles. Kehrer et al. [16],
Sedlmair et al. [32], and Wang et al. [35] provided detailed surveys of techniques
in the area. Bruckner and Möller [2] employ squared differences to explore the
visual effects simulation space, Hummel et al. [14] compute region similarity via
joint variance, and Kumpf et al. [20] track statistically-coherent regions using
optical flow. Hao et al. [9] calculate shape similarities for particle data using
an octree structure, while He et al. [10] employ surface density estimates for
distances between surfaces. Fofonov et al. [3] propose fast isocontour calculation
for visual representation of ensembles.

For projection of high-dimensional data, Vernier et al. [34] propose spatial
and temporal stability metrics to evaluate the quality of PCA, t-SNE, UMAP,
and Autoencoders. Bertini et al. [1] presented a systematic analysis of quality
metrics supporting exploration. We, however, study how autoencoders impact
the 2D projection quality when combined with traditional DR techniques.

Autoencoder-based Feature Extraction. Several works confirm the abil-
ity of autoencoders to extract expressive features for ensemble data. Hinton et al.
[13] first demonstrated that autoencoders can be utilized for DR and can be ap-
plied to large datasets. Plaut [26] performed principal component analysis using
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a linear autoencoder. Han et al. [8] developed an autoencoder-based framework
FlowNet to extract such features as streamlines and stream surfaces. Jain et al.
[15] utilized deep convolutional autoencoder to obtain a compact representation
of multivariate time-varying volumes by learning high-level features. Lekschas
et al. [21] developed a convolutional autoencoder-based technique PEAX for
interactive visual pattern search. Guo et al. [7] developed a deep convolutional
autoencoder minimizing the reconstruction and clustering losses for end-to-end
learning of embedded features for clustering. Ge et al. [4] achieved state-of-the-
art clustering performance on MNIST via dual adversarial autoencoders. He et
al. [11] proposed a deep learning approach for comparison of multiple ensem-
bles. Guo et al. [6] developed a visual analytics system based on autoencoders
for medical records. Way et al. [37] utilize variational autoencoders to extract
biologically relevant features from gene expression data. We also employ deep
convolutional autoencoders to enable visual exploration of scientific data, but fo-
cus on a study of autoencoder variants and model selection in a partially labeled
scenario.

3 Study Setup, Metrics and Selection

Standard DR techniques, such as PCA, t-SNE, and UMAP, lose efficiency when
applied directly to high dimensional (ensemble) data (e.g. [13], [37]). To address
this, we first reduce the dimensionality of ensemble data with autoencoders and
then construct a 2D projection. An autoencoder is a neural network for unsu-
pervised learning of efficient data encodings. It consists of an encoder followed
by a decoder, with the former compressing the input and the latter trying to
reconstruct it as accurately as possible. Different architectures are employed be-
low, and evaluated both visually and quantitatively with metrics. These metrics
also provide the basis for Pareto efficient selection.

Scientific Ensemble Datasets. We consider two ensemble datasets in
our study. The first dataset depicts channel structures in soil from Markov
chain Monte Carlo, consisting of independent members generated during simula-
tion [29]. The images are monochrome and have a resolution of 50×50. In total,
there are 95K images. The second dataset Drop Dynamics stems from a phys-
ical experiment to study the impact of a droplet with a film [5]. The captured
experiment images, similarly to the previous dataset, are monochrome and in
this case have a resolution of 160×224. In total, there are 135K images from 1K
members. A subset of the members of both ensembles are exemplified in the grid
views in Fig. 2. A subset from both datasets was manually labeled, as required
by the metrics that we use to evaluate the projections. Labeling is based on
different behavior types observed in ensembles and was performed by marking
groups of images with similar behavior types as one class label. In the label-
ing process a number of randomly selected members was considered. MCMC
consists of five categorical classes ( ) which depict qualitatively differ-
ent types of channel structures. For Drop Dynamics, there are eight classes in
total: “bubble”, “bubble-splash”, “column”, “crown”, “crown-splash”, “splash”,
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Fig. 1: (a–i) Autoencoders for feature learning prior to 2D projection improves
the result for spatial ensembles (here: channel structures in soil from MCMC,
Fig. 2a and Fig. 2c), but the outcome highly depends on architectures, param-
eters and underlying data. A partial labeling of 1% suffices to yield expressive
quality metrics, and (j) allows to explore suitable variants on the Pareto frontier.
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“drop”, and “none” (not fitting any other category). 2.5K labeled images are
available in total for MCMC and 7.2K for Drop Dynamics. On both projection
views (Fig. 1 and Fig. 3) gray points ( ) indicate unlabeled images.
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Fig. 2: Grid views with coloured frames around each image representing labels.
The new position in the grid was found via linear assignment from a 2D projec-
tion to the grid [28].

Autoencoder-based Feature Extraction. Besides standard and sparse
autoencoders (AE), we utilize variational autoencoders (VAE) [18], based on a
variational inference and learning algorithm, as well as its constrained version
(β-VAE) [12]. VAE is scalable for large datasets and its inherent regulariza-
tion brings latent vectors closer together. SWAE [19] is based on Wasserstein
Autoencoders [33], which share properties of VAE while achieving better recon-
struction. All types of considered autoencoders (AE, SWAE, VAE and β-VAE)
have a symmetric structure - the decoder is reversed to the encoder. Both parts
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of autoencoders are represented via deep neural networks, containing several
hidden convolutional and fully connected layers. The objective function used for
training varies depending on the autoencoder type (see supplemental material
for details). In our implementation of AEs and (β)-VAEs, we reduce the resolu-
tion of input images by half after each convolutional layer by using a stride of
2 in each dimension of spatial (2D) convolutions. For the spatio-temporal (3D)
convolutions, a stride of 3 was used. The kernel size for convolution was set to
3 for each dimension, the number of filters of 64 in each hidden convolutional
layer was used with zero padding. As an optimizer, Adam [17] with learning rate
0.0005 was employed throughout. The “ReLU” activation function was used in
combination with random uniform weight initialization. We utilize L1 and L2
regularization for Sparse Autoencoders. We follow the implementation of SWAE
from [19] utilizing “LReLU” activation and average pooling.

For MCMC dataset with no temporal information only 2D convolutional
models were used, trained and validated on 20K unlabeled images. For the
(spatio-temporal) Drop Dynamics, both 2D and 3D autoencoders were used,
trained and validated on 15K unlabeled images. Note that we utilize unsuper-
vised machine learning and projection techniques, labels are solely employed for
the purpose of evaluation in this work (also see the discussion of metrics below).

Projection to 2D Space. After transforming the ensemble data from physi-
cal to feature space, we obtain a latent vector for each data sample. These feature
vectors are subsequently projected to a 2D space using DR techniques. In gen-
eral, we find that directly reducing the dimensionality of ensembles to 2D using
autoencoders is inefficient for most of the models since the autoencoder cannot
reasonably reconstruct the input which is an indication of poorly learned fea-
tures (although there are exceptions, see discussion below). In the following, we
restrict ourselves to UMAP projection, which outperformed other DR techniques
such as t-SNE and PCA in preliminary experiments with the same subset of la-
bels. UMAP is a non-linear technique and uses a smoothed version of k-nearest
neighbors distance. We utilize UMAP with min. distance = 1.0 parameter, de-
viating from the default. This value controls how close points are located on the
newly created 2D map and produces visually less overlapping projections.

Metrics (and partially labeled data). We use two commonly used com-
plementary metrics to capture the projection quality: neighborhood hit and sil-
houette. While neighborhood hit measures how well the clusters are separated,
silhouette additionally provides the measure of tightness. The neighborhood hit
metric [34] is based on k-nearest neighbors [25] (k = 17 in our setting, values
ranging from 7 to 27 yield similar results), and since it computes the fraction
of neighbors belonging to the same class for each labeled data point, it provides
an accurate measure of the separation and was preferred to other similar met-
rics. The output is in the range of [0, 1], where higher values represent a better
separation of the clusters. The silhouette metric [30] is based on (Euclidean)
distance and computes the distances between a data point and all data points
in the same cluster. Since it takes into account distances to all data points in
the nearest neighboring cluster as well, it still reaches a high score in the case of

https://hamidgadirov.github.io/aeproj/appendix/Appendix.pdf
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well separated friend-of-friends clusters and therefore was preferred to other sim-
ilar metrics. The output is in the range of [-1, 1], where higher values represent
a better matching of a data point to its own cluster rather than to neighbor-
ing clusters. Note that we also considered other metrics (Calinski-Harabasz and
Davies-Bouldin) which, however, yielded similar results to the silhouette metric
(see supplemental material).

Pareto efficient Selection. We identify the best performing feature extrac-
tion models based on multi-objective optimality criteria (Pareto frontier). For
this, from our two considered metrics we construct a 2D plot, demonstrating the
results of evaluating the clustering quality of final projections, with the axes of
neighborhood hit and silhouette (maximum is better) metrics. After obtaining
the Pareto frontier, it is possible to select one of the best shown models, check
its corresponding visualization, and investigate the projection of ensemble data.

4 Evaluation

We now discuss 2D projection results of our ensembles, demonstrate Pareto-
efficient selection, and evaluate metric stability with labeled subsets (see supple-
mental material for 2D projections of all variants).

MCMC (Fig. 1). In the baseline method that uses UMAP directly (a), we
can observe well separated but dispersed clusters of each class (reflected by high
neighborhood hit but low silhouette). The projection results improved for all
classes with the 2D sparse autoencoder (b). Note that the number after the au-
toencoder type indicates the dimensionality of the latent space. However, classes
partitioned into different clusters and yielding highly irregular shapes can still
be observed. This is reflected by low values in the silhouette which position AE
results between the baseline and β-VAEs in Fig. 1j. For SWAE results (c and d),
we observe an improvement with all classes being more tightly clustered. Both
metrics are improved because of the influence of the SWAE objective function.
Interestingly, SWAE with direct projection to 2D (not using UMAP) also yields
a good projection (c). 2D VAE (e) and 2D β(2)-VAE (f) further improve the
results. We see well-separated clusters and even higher neighborhood hit and
silhouette values. Models like 2D β(4)-, β(8)-, and β(10)-VAE (g, h, and i) cre-
ate clusters in a shape of a Gaussian distributions, further improving metric
scores. These are also on the Pareto frontier (Fig. 1j). Interestingly, β(8)-VAE
with a comparably low latent space dimensionality of 32 is able to extract fea-
tures properly. Overall, we observe a significant benefit in performing feature
extraction on the MCMC ensemble. Visualizations show that AE, SWAE, and
(β-)VAE with different β values all outperform the baseline. In the final projec-
tion of almost all models, we see data points belonging to the same class located
close to each other, forming clusters of the same classes. In the case of β-VAE,
properly selected values of β (not too high) can improve the results and lead to
visually pleasing projections.

Drop Dynamics (Fig. 3). The baseline result (a) successfully produces
clusters of similar samples and thus achieves a relatively high neighborhood

https://hamidgadirov.github.io/aeproj/appendix/Appendix.pdf
https://hamidgadirov.github.io/aeproj/appendix/Appendix.pdf
https://hamidgadirov.github.io/aeproj/appendix/Appendix.pdf
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hit. This is clearly noticeable in the case of classes “bubble”, “bubble-splash”,
“splash”, and time steps without any behavior category (“none”). However, it
scatters the samples of the same type across many small clusters, which is high-
lighted by the poor silhouette values. In the case of simple 2D Sparse AE with
latent dimensionality 64 (b), the model also cannot group all data points belong-
ing to the same class into one cluster. We can see the “bubble”, “bubble-splash”,
and “splash” type time steps present in different parts of the final projection,
which is based on the latent space learned by the autoencoder. In (c), clusters
start to appear in the form of Gaussian distributions (“bubble”), due to the
KL divergence regularization term in the VAE loss calculation, improving the
silhouette score. In (d), corresponding to the 3D AE, we can notice better con-
nected clusters in the case of “crown” and “drop” classes, which is reflected in
the neighborhood hit score. Elongated clusters still persist, since there is no KL
regularization applied in this case. In (e) and (f) corresponding to the SWAEs,
most clusters are separated from each other, but still have multiple subclusters.
This is related to WAE loss calculation: different latent codes remain far away
from each other. In (g) corresponding to the β(0.1)-VAE with latent dimension-
ality of 256, we can notice better connected clusters in the case of “crown”.
In the case of “bubble”, clusters are starting to appear in the form of a Gaus-
sian distribution. This is reflected in the higher neighborhood hit and silhouette
scores. In (h) corresponding to the VAE (β = 1), likewise decent projections can
also be observed. Due to the KL divergence term in the VAE loss calculation,
the 3D VAE model created clusters in the form of Gaussian distributions. It
can be noticed e.g. in the case of “bubble” type time steps, no elongated clus-
ters can be observed. In models with higher β values greater effect of KL loss
can be observed. The influence of β trades off neighborhood hit for silhouette
metric, helping to bring points of the same class closer, but also mixing some
clusters. Such trade-offs are why we use Pareto optimality for our model selec-
tion (Fig. 3j). However, too high values of β (e.g. β >= 4) mix the data points in
the final visualization because the input has only a minor impact on the latent
vector, which leads to poorly learned features (Fig. 3i).

Overall, we see that the autoencoder-based feature extraction can improve
the baseline results regarding the metrics, which capture important characteris-
tics under the presence of a large chunk of unlabeled (previously unseen) data in
particular. We also note that most 3D convolutional models outperform models
with 2D convolutions. 3D models were able to learn better features by using
three time steps in the input instead of one, without the need to increase the
dimension of the latent space.

Pareto efficient selection (Fig. 3j and Fig. 1j). As can be seen in Fig. 1j,
corresponding to MCMC, a significant improvement was achieved with (β-)VAEs
and SWAE over the baseline ( ). The most efficient are β-VAE models with the
values of β ranging from two to eight and SWAE with direct 2D projection. As
can be seen in Fig. 3j, corresponding to Drop Dynamics, an improvement was
achieved with 2D/3D AEs, 3D SWAEs, 3D VAE. The Pareto efficient models,
connected with green line, are 3D AE, 3D SWAE, and 3D β(0.1)-VAE.
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Fig. 4: Stability of metrics using labeled subsets, replicated on 20 runs.

Stability of Metrics using Labeled Subsets (Fig. 4). Since we utilize
only a small subset of the labeled data which supports the selection of autoen-
coder variants, it is crucial to test the stability of the results. In Fig. 4, we
demonstrate that the considered models produce stable metric scores for differ-
ent numbers of labels. We use random label subsets of different sizes, ranging
from 0.1% to 2.5% for MCMC and from 0.04% to 5.33% for Drop Dynamics.
We can see that as we increase the amount of labels for both datasets, the met-
ric values are converging with low uncertainty. In contrast, a small amount of
labels leads to a high uncertainty in metric values. When the number of labels
is critically small, (c), the neighborhood hit metrics breaks down and produces
low values and very low uncertainty because of the label sparsity. In this case,
the neighborhood includes points from far away and the metric converges to the
value of 1/number-of-classes because it encounters points from all the classes.
Overall, this stability study suggests that it is possible to achieve representative
results utilizing a comparably small percentage of labeled data points.

5 Discussion and Outlook

The premise of this work is that unsupervised feature learning prior to dimen-
sionality reduction with techniques like UMAP improves the results for spatial
and spatiotemporal ensembles. The rationale is that higher-level features ex-
tracted via autoencoders from the field data yields a representation that better
conveys characteristic differences between them, which are relevant for analyz-
ing the ensemble. We demonstrate this by showing that all autoencoder variants
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yield superior results when considering the manually assigned labels that corre-
spond to the characteristic cases.

The properties of the autoencoders are directly reflected in the projection.
Most prominently, the Kullback-Leibler divergence term of (β)-VAE causes the
clusters to have a Gaussian distribution, with the influence depending on the
Lagrangian multiplier β. We initially aimed to provide general suggestions on
which autoencoder architecture is the most suitable, but our experiments showed
that the results are highly data-dependent. While not evaluated in this paper, we
also found that simple modifications of the datasets, such as normalization and
cropping can have a significant influence. This is due to the fact that especially
methods with an MSE reconstruction objective encode noisy, randomly varying,
and unimportant features presented in the input. To distinguish which differences
are meaningful, one requires human input, which we took in the form of labels. In
this work, we propose to use suitable projection metrics and a Pareto optimality
to guide the selection. Crucially, as scientific datasets typically come without
labeling and manual annotation is time-intensive, we were able to show that
basing the decision on a small subset already suffices for an informed selection.
However, for a practical application to a novel ensemble without labeling, we
still consider our analysis provided in this work useful to serve as an initial basis
for model selection. According to our observations, if the images do not contain
a high proportion of useful information (i.e., a large portion of the pixels relevant
for feature extraction), models like AEs, SWAEs, or VAEs with small values of
β (<1) are beneficial. Otherwise, VAEs with higher values of β (>1) can achieve
a better clustering results.

For MCMC with a high proportion of relevant elements in the data, autoen-
coders achieve a more significant improvement over the baseline in comparison
to the Drop Dynamics ensemble (where the majority of pixels just represent
background). To further improve such cases in particular, in future work, we
aim to investigate other unsupervised learning approaches besides autoencoders
or generative models with a semi-supervised setup. The robustness and general
performance of the proposed pipeline could further benefit from adequate prior
preparation of the data, e.g., via noise reduction or segmentation. For β-VAEs it
was challenging to find the best Lagrangian multiplier β, rather than to employ
a fixed value, and so it might be better to gradually increase the β-weighted KL
term during training in order to achieve both disentangled representation and
high reconstruction quality. Finally, 2D projection is just one prominent exam-
ple where prior feature learning is beneficial for visual analysis, and we aim to
explore further scenarios in future work like clustering and search.

References

1. Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visual-
ization: An overview and systematization. IEEE Transactions on Visualization and
Computer Graphics 17(12), 2203–2212 (2011)



12 H. Gadirov et al.
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