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ABSTRACT

This work introduces AGri (Adaptive Thumbnails For Grid-based
Visualizations), a method for dynamically adjusting thumbnails of
spatiotemporal data—such as videos—to varying screen footprints
in grid-based layouts. AGri aims to maximize thumbnail expres-
siveness, which quantifies how well similarity relationships among
data members (e.g., video frames) are preserved. Thumbnails are
generated via cropping, with crop windows optimized based on cu-
mulative salience images. By modeling the trade-off between ex-
pressiveness and footprint size, AGri defines a curve—the AGri
curve—representing Pareto-optimal visual representations. This
curve enables dynamic selection of thumbnails suited to different
grid sizes and resolutions. The approach is demonstrated on two
datasets: a spatiotemporal ensemble from scientific experiments
and an animated short film.

Index Terms: Grid-based Visualization, Thumbnails, Spatiotem-
poral Data, Video Visualization

1 INTRODUCTION

Videos are a form of spatiotemporal data that is highly prevalent
in our daily lives and across various scientific domains [1, 5]. To
support different use cases, dedicated visualization approaches have
been proposed in fields such as medicine [31], sports [2, 25, 26, 32],
and social media analytics [18]. A fundamental, general task
across domains is to provide overviews that summarize video con-
tent [1, 5]. Storyboards are a common, domain-agnostic solution
for this: they display (uniformly) sized video frame representations
in a regular grid, typically reflecting the temporal sequence [5]. Tra-
ditionally, storyboards are shown at low grid resolutions (e.g., 3 x 4
images per page [3]).

Based on expert interviews, Afzal et al. [1] identified large-
scale data visualization and pattern analysis as major requirements
for video visualization. High-resolution grids are promising not
only for presenting large datasets—where thumbnails represent
video frames in grid cells—but also for employing layouts that
reflect relationships between frames to support pattern analysis
(e.g., revealing clusters and outliers). Dimensionality reduction
(DR) techniques can capture these relationships by projecting video
frames into 2D scatterplots, such that similarity relations between
frames—i.e., the underlying data structure—are preserved [6].
Overlap-removal methods generate grids from such plots by rear-
ranging thumbnails while aiming to preserve the layout character-
istics of the original DR projection [7, 8, 10, 11, 12, 14, 15, 17, 22].

There is a fundamental trade-off in grid-based visualization [10]:
as grid resolution increases, a greater number of thumbnails can be
shown, allowing for more comprehensive coverage of the video.
However, the footprint of each thumbnail—the space it occupies
on the screen—decreases, which hampers expressiveness, defined
here as the degree to which thumbnails preserve similarity rela-
tionships between video frames. This notion of expressiveness is
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Figure 1: AGri determines the AGri curve during preprocessing,
which defines optimal thumbnail representations across different
footprints. At runtime, AGri dynamically selects thumbnails from this
curve as the grid view—and thus the footprint—changes.

aligned with the dimensionality reduction (DR) objective of pre-
serving the inherent structure of spatiotemporal data, as discussed
above. In the visualization literature, the challenge of “show[ing] a
larger amount of data in a readable way” [27] is often referred to as
visual scalability [4, 9, 28]. In grid-based representations, thumb-
nail footprints can also change dynamically in interactive scenarios,
such as when adjusting the grid resolution and thereby the number
of thumbnails shown [7, 10, 17].

In this paper, we introduce AGri, a method to dynamically adapt
thumbnail representations to different footprints, optimizing the
trade-off between expressiveness and footprint for grid-based vi-
sualizations of spatiotemporal data such as videos. AGri generates
thumbnails via cropping, allowing the display to focus on the most
relevant regions of the original video frames. The position of each
crop window is optimized using cumulative salience images. From
arange of crop windows of different sizes, the Pareto-optimal AGri
curve enables the dynamic selection of thumbnail representations
based on their footprint within a grid. In doing so, AGri offers
a novel approach to the visual scalability challenge of presenting
spatiotemporal data through thumbnails in grid-based layouts. We
demonstrate AGri on two use cases: (i) droplet, a 2D spatiotem-
poral ensemble from scientific experiments [13], and (ii) Big Buck
Bunny (BBB), an animated short film featuring forest animals [29].

2 METHOD

Given a 2D spatiotemporal ensemble—a video (collection)—-X, AGri
aims to determine the AGri curve, a set of thumbnail representa-
tions for grid-based visualizations that are optimal with respect to
the trade-off between thumbnail expressiveness E and pixel foot-
print ||0||. The AGri curve enables interactive, adaptive selection of
thumbnail representations suitable for different grid sizes and reso-
lutions. The respective steps are outlined below (also see Fig. 1).

Identify Salient Crop Areas A

From the 2D pixel resolution of ensemble members (video frames),
we extract different areas (2D crop window extents) A that will be



Input: areas A, expressiveness E

Result: AGri curve parameters A*
1 A« sort(A, key = E(-), order=descending);
2 A* «+front(A);
3 foralla € A do
4 if aHDH < baCk(A*)HDH then
5 | A%< A+[a];
6 return A*,

Algorithm 1: Identification of the AGri curve.

considered throughout the AGri procedure. We construct this set it-
eratively: starting from the full resolution ag, we incrementally re-
duce the number of pixels in the x-direction, adjusting y to maintain
the original aspect ratio as closely as possible. A new configuration
a] is selected when the total number of footprint pixels a) | differs
by a certain factor (:= 10% in this work). This process is repeated,
where each a; | is derived from a;, until a; contains four pixels or
fewer.

To generate a thumbnail a(x) with area a € A for a member x €
X, we need to determine a specific crop window offset, as the crop
can be positioned freely. To find the best offset, we use a simple
salience measure for spatiotemporal data. We compute difference
images with both the previous and next frames, and select the one
with the lower total difference. From this, we derive a cumulative
salience image, reducing each evaluation to four lookups. We then
evaluate all possible offsets (with a step size of 4 pixels in this work)
and choose the one with the highest salience sum.

Evaluate Expressiveness E

We quantify expressiveness E using triplet loss, a machine learn-
ing approach that compares relative distances and is effective even
with few samples [30]. Adopting triplet loss, AGri evaluates
whether similarity relationships among ensemble members—video
frames—xq,x,xp € X are preserved in their respective thumb-
nails a(xg),a(x;),a(xz). To do this, we randomly sample ensem-
ble members to form a fixed set of triplets 7', where each triplet
(Xa:Xp,Xn) € T consists of an anchor x,, a positive x,, and a nega-
tive x,, such that:

AMSE(xdux[)) < AMSE(xmxn)u

with Aysg denoting mean squared error (considering ||T|| = 1024
triplets in this work). We then assess whether the same relationship
holds for their thumbnails, using the perceptual similarity metric
LPIPS [34]. Expressiveness E(a) € [0,1] for a € A is defined as:

] 1, if Aupips(a(x),a(xp))
E(a):= T < Arpips(a(xa),a(xn)))
(xaxpxa)€T | 0, otherwise.

Solve Trade-Off: Expressiveness vs. Footprint

We now compute the AGri curve, which contains the Pareto-
optimal area subset A* C A, considering both area expressiveness
E(A) and footprint A. Our algorithm (Alg. 1) begins by sort-
ing the design space A in descending order of expressiveness (1. 1).
The configuration with the highest expressiveness is added first to
the AGri curve (1. 2). Then, for each a € A, if its footprint ag) is
smaller than that of the last added element (1. 4), we include it in the
AGiri curve (. 5)—thus maintaining Pareto-optimality with respect
to decreasing size.

Update Thumbnails

The AGri curve enables efficient runtime selection of a crop area a*
for a given requested footprint ||J||. We choose the configuration

a) Salience (from left to right: 3 x droplet; 2 x BBB)

(b) Cumulative Salience Image
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(e) droplet: 52 x 36 area (corresponding to Fig. 3e); BBB: 228 x 128 (Fig. 3j)

Figure 2: Salience-based identification of crop offsets. (a) Salience
computed from differences to temporally adjacent frames. (b) Cumu-
lative salience image enabling efficient evaluation of salience within
arbitrary rectangular regions. (c-e) Selected crop areas for varying
footprint sizes.

with the largest footprint smaller than ||J|| on the AGri curve A*:

a’ < argmaxE(a) s.t.ajg < |0
acA*

3 CASE STUDIES

We consider two datasets: (i) droplet—an experimental dataset
analyzing the impact of a droplet hitting a thin fluid film [13],
and (ii) BBB—the animated comedy short film Big Buck Bunny,
featuring forest animals [29]. The droplet dataset contains 6120 ex-
perimental grayscale images at a resolution of 448 px x 320px. BBB
consists of 1431 RGB video frames, sampled every tenth frame
from the original video, at a resolution of 420p (853 px x 480px).
AGiri is implemented in Python 3.13 using NumPy, and employs
the 1pips module to assess perceptual differences [34]. Since dif-
ferent crop areas can be evaluated independently, we use a parallel
CPU implementation. On an entry-level MacBook Air (M4), the
complete AGri pipeline takes approximately 30 min for droplet and
5h for BBB.

Salient Crop Areas (Fig. 2)

(a) The salience measure shows to be expressive for both droplet
and BBB. For droplet, the focus lies on the falling and deforming
droplet, the expanding crown, and the resulting splashes. In BBB,
the emphasis is on the most active characters in the given frame.
(b) presents the cumulative salience images, which are aggregated
from individual salience fields to enable fast evaluation of salience
within arbitrary regions. (c-e) show selected crop areas for dif-
ferent footprints—configurations along the AGri curve (see Fig. 3
and Fig. 4 below). These areas generally align well with regions
of high salience, but a key limitation becomes apparent: fixed-size
crop windows cannot always adapt to the full extent or shape of
salience distributions. For example, in (c), the crop area in droplet
is larger than the small salient region caused by the falling droplet,
yet this size is necessary to fully encompass the expanding crown.
In BBB, the same window is oversized for the bird but appropri-
ate when both the bunny and the butterfly are present. In (e), a
smaller crop area is sufficient to capture the droplet or butterfly, but
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Figure 3: (a&f) The AGri curve depicts Pareto-optimal solutions A* (gray) for droplet and BBB, respectively; other areas (A — A*) are shown in
yellow for reference. (b-e & g-j) The resulting thumbnails for selected areas (colored in (a &f), respectively) are presented in a small grid.

may omit other contextually relevant parts. Note that at this smaller
scale, the step size of 4 pixels used for evaluating potential offsets
plays a more significant role. In both over- and under-coverage sce-
narios, the optimal crop positioning can depend on subtle factors.
Nevertheless, the selected crops retain strong expressiveness, and
the consistent preservation of spatial scale remains a key advantage
of the design.

AGiri curve (Fig. 3)

The AGri curve identifies thumbnail configurations that achieve re-
duced footprint with comparatively small loss in expressiveness—
shown in (a) for droplet and in (f) for BBB. The shape of the AGri
curve for both datasets indicates that the trade-off between footprint
and expressiveness is nonlinear. The annotated points A — A* (in
yellow) illustrate that increasing the footprint does not necessarily
lead to increased expressiveness. For droplet, images are arranged
based on expert-assigned labels in (b-e) (as indicated by the num-
bers at the top of the columns, which represent different behavior
types [13]). BBB uses a temporal grid layout akin to a storyboard
in (g-j). (b) For droplet, the highest expressiveness is achieved us-
ing the full image. (g) For BBB, near-maximal expressiveness is
obtained with a crop area covering 92 % of the frame. This high-
lights the influence of using different metrics: while Aysg is used
to define similarity in the triplet sampling, Ay prps is employed to
evaluate thumbnail similarity. As a result, even the reference con-
figuration does not achieve perfect expressiveness (E = 1).

(c) For droplet, a footprint reduction to ~ 25 % still maintains
high expressiveness, with thumbnails conveying the core dynam-
ics. (d) Moving further along the “elbow” of the AGri curve, high
expressiveness is retained even at ~ 10 % of the original footprint.
While the main features are still captured, large structures (e.g.,
extensive crowns) may be only partially visible. (e) Reducing the
footprint further—to just over 1 %—results in a noticeable drop in
expressiveness E. Though small features like individual droplets
are still captured, distinguishing between them and more complex
events (e.g., splashes) becomes difficult. Large-scale features, such
as developing crowns, are often only partially visible. That said,
key visual characteristics remain preserved in the crop images.

(h) For BBB, a significant footprint reduction to ~ 51 % also
leads to only a small loss in expressiveness, although the trade-off is
less favorable than for droplet. We attribute this to the higher visual
complexity of BBB frames. (i) Continuing along the AGri curve,
expressiveness remains high at ~ 27 % footprint, with thumbnails
still capturing the main activity in most scenes. (j) Reducing the
footprint to ~ 7 % leads to further loss in expressiveness, but thumb-
nails still capture the dominant actions. Some elements, however,
may be omitted—e.g., in Fig. 2e (right), the butterfly is preserved,
while the bunny is no longer visible.

Thumbnail Update (Fig. 4)

We now apply the AGri curve—specifically the configurations pre-
sented earlier in Fig. 3—to grid-based visualizations. To this end,
we use Sca’Gri (Scalable Gridified Scatterplots), a recently intro-
duced post-processing technique for generating grid-based layouts,
utilizing the provided implementation [10]. Sca®Gri produces grids
with varying numbers of cells which is controlled by modifying
the horizontal resolution (g,. Starting from a 2D embedding of the
ensemble generated via UMAP [21], Sca’Gri assigns (a subset of)
ensemble members to grid cells such that a certain assignment dis-
tance is not exceeded (only one member can be presented per cell,
members that cannot be assigned under the distance constraint are
discarded). As (g, increases, the grid can show more thumbnails,
but to maintain constant overall resolution, the footprint ag| of
each thumbnail decreases accordingly.

For droplet, (a) shows a low-resolution grid with g, =5, using
the AGri configuration from Fig. 3b. This setting preserves the full
detail of each thumbnail, but only a small portion of the ensem-
ble is displayed. Increasing the resolution to g, = 10 in (b) al-
lows a broader selection of ensemble members to be shown, while
the thumbnails still convey the core features of each frame. With
gx = 16in (c), the grid presents a comprehensive view of the struc-
tural variability in the ensemble, while retaining good visual expres-
siveness in the thumbnails. This configuration provides a balanced
trade-off between grid resolution g, and thumbnail footprint a).
Further increasing the resolution to gy = 43 in (d) significantly ex-
pands coverage of the ensemble, but the thumbnail footprints be-
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Figure 4: Grids created via Sca’Gri [10] with thumbnails from Fig. 3. Assuming a fixed total resolution in the order of a full HD screen, the
requested thumbnail footprint ||J| is accordingly decreased when increasing (horizontal) grid resolution g,.

come small, reducing their expressiveness—as discussed above by
means of Fig. 3e.

For BBB, (e) illustrates a configuration with (g, = 6) where the
thumbnails are highly expressive, but only a limited number of
frames can be shown. Increasing the resolution to g, = 8 in (f)
enables a greater variety of frames to be displayed, with thumbnails
still capturing the most salient elements. At gy = 11, shown in (g),
the grid more accurately reflects the structure of the underlying 2D
embedding while still maintaining expressive thumbnails. Finally,
(h) presents a grid with g, = 22, which best preserves the layout de-
rived from dimensionality reduction. However, the thumbnails are
significantly smaller, leading to lower expressiveness, as previously
discussed in the context of Fig. 3;j.

4 DISCUSSION AND FUTURE WORK

We now discuss promising directions for extending, improving, and
generalizing AGri in future work.

Perceptual Aspects. In the grid visualizations considered above,
we focused primarily on technical aspects and did not explicitly ac-
count for perceptual factors. Healey and Sawant conducted psy-
chophysical experiments to investigate the limits of resolution and
visual angle in visualization [16]. They found that a minimum
number of pixels (resolution) and subtended physical area on the
retina (visual angle) are required to distinguish visual features, and
that these limits can easily be exceeded in typical visualizations.
This makes visual angle a key factor in characterizing the proper-
ties of the eye and early vision (see Ware [33]). Incorporating these
perceptual considerations into AGri’s thumbnail adaptation process
would be a valuable extension, especially in supporting the scal-
ing of visualizations to a range of display scenarios—from small
devices like smartwatches to large-scale displays like powerwalls.

Heterogeneous Areas. Area selection can produce multiple
similarly optimal solutions when the target footprint is either very
small or very large. One possible direction to address this chal-
lenge is to allow heterogeneous (variable-sized) crop areas that bet-
ter align with the extent of salience in each frame. To maintain
a consistent visual footprint, selected areas could then be down-
sampled accordingly to fit the required display size. However, this
comes at the cost of losing the benefit of uniform thumbnail sizes

in grid visualizations, which helps preserve size-related interpreta-
tions of visual features.

Expressiveness Quantification. AGri currently quantifies ex-
pressiveness using a triplet-loss-inspired approach from machine
learning [30], where triplets are constructed based on data similar-
ity (Amsg)- A key strength of this approach is that it requires only
the raw data as input—no labels or metadata are needed. However,
in some use cases, additional information is available that could
further guide expressiveness modeling. For example, in droplet,
expert-assigned labels (corresponding to class numbers in Fig. 3b—
e) could be used to form semantically meaningful triplets, where
anchor and positive sample come from the same class, and the neg-
ative sample from a different one. The improvement in expressive-
ness could further be underlined and/or driven by empirical studies.

Generalization. We demonstrated AGri for two different
datasets: droplet and BBB. In both cases, we deal with temporal
data, and salience is computed using simple frame-difference mea-
sures. More general salience models could be considered in the
future to support other types of data and further improve expressive-
ness. In addition, extending the parameter space A (i.e., the space
of candidate crop areas in the current work) could serve as a foun-
dation for more general thumbnail design strategies (e.g., comple-
menting existing models of visualization design [19, 20, 23, 24]).
Computationally, this would further induce the need for efficient
search approaches for high-dimensional visualization design spaces
A, as well as implementations for GPUs and/or distributed environ-
ments (exploiting the massive parallelism induced by large |A||).

5 CONCLUSION

We presented AGri, a novel method for adaptive thumbnail gen-
eration in grid-based visualizations, designed to maximize expres-
siveness for a range of thumbnail footprints. AGri uses cumulative
salience images to guide the selection of crop areas, and computes
the AGri curve to balance the trade-off between expressiveness and
footprint. This enables flexible, data-aware adaptations of thumb-
nails while preserving similarity relationships—i.e., the structure—
of the underlying spatiotemporal ensemble or video. In doing so,
AGri contributes an approach to enhance both the scalability and
interpretability of thumbnails in grid-based visualizations.
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