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Abstract

We present an integrated approach for real-time performance prediction of volume

raycasting that we employ for load balancing and sampling resolution tuning. In volume

rendering, the usage of acceleration techniques such as empty space skipping and early

ray termination, among others, can cause significant variations in rendering performance

when users adjust the camera configuration or transfer function. These variations in

rendering times may result in unpleasant effects such as jerky motions or abruptly

reduced responsiveness during interactive exploration. To avoid those effects, we

propose an integrated approach to adapt rendering parameters according to performance

needs. We assess performance-relevant data on-the-fly, for which we propose a novel

technique to estimate the impact of early ray termination. On the basis of this data, we

introduce a hybrid model, to achieve accurate predictions with minimal computational

footprint. Our hybrid model incorporates aspects from analytical performance modeling

and machine learning, with the goal to combine their respective strengths. We show the

applicability of our prediction model for two different use cases: (1) to dynamically steer

the sampling density in object and/or image space and (2) to dynamically distribute the

workload among several different parallel computing devices. Our approach allows the

renderer to reliably meet performance requirements such as a user-defined frame rate,

even in the case of sudden large changes to the transfer function or camera orientation.
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1. Introduction

Volume visualization is a widely used tool for visualization of measured and simu-

lated data in numerous different areas such as physics, engineering, biology and many

more. By enabling users of visualization applications to dynamically interact with the

volume data, additional insight beyond the initial focus may be gained. Thereby, classic

user interactions are adjustments to the transfer function (which maps density values to

color) as well as changes to the camera configuration (e.g., rotation and zooming). There

are typically two main factors that contribute to a satisfying user experience during

interactive exploration of volume data sets: low response times and a high rendering

quality. While the latter can be achieved by employing a high sampling of the data set,

low latencies and high frame rates are crucial for response times. In the context of the

recent revive of virtual reality for scientific applications [1], maintaining high and stable

frame rates as well as low latencies gains even more importance. In those applications,

variable frame rates often tend to cause unpleasant side effects, such as cybersickness,

for many users.

To be able to gain interactive frame rates for volume visualizations on workstations,

GPUs are often used to accelerate the computation and rendering. Besides the hardware

used for computation, interactively changed parameters (i.e., transfer function and

camera configuration) have a significant impact on rendering performance. In order to

accomplish constant interactivity, those variations in performance need to be accounted

for, especially in challenging cases with significant changes between frames (e.g.,

switching to a different transfer function). One way of absorbing such effects is to adapt

the sampling density in object or image space. However, in the case of an interactive

application, the basis for this adaption has to be some kind of assessment of how the

performance will evolve in upcoming frames (after potentially big changes) in order to

avoid unpleasantly long response times or jerky motions.

Predicting performance of volume rendering on parallel hardware is a challenging

task because of the involved complexity. Numerous factors have a significant, non-

obvious impact on performance. For instance, this includes the hardware employed for

parallel computation, as well as the specific algorithm and parameter configuration that
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may be changed during runtime.

We propose our method to dynamically predict performance of a volume raycasting

application that uses popular acceleration techniques. To show the usability of our

technique, we present two use cases that are based on our frame time prediction. In the

first one, we use the predictions to dynamically adjust the sampling rate of the volume

rendering process to reliably meet a user-defined frame target (i.e., interactive frame

rates). Thereby, we can adjust the sampling rate in ray space (integration step size along

rays) as well as in image space (image resolution, i.e. the number of rays). As a second

use case, dynamically distribute the computational load among multiple heterogeneous

GPUs and balance this load according to our predicted frame execution times.

In the following section, we give an overview on related work (Sec. 2), afterwards

we discuss what we consider to be the main contributions of our work.

• We present our general approach for performance prediction and the tuning of

sampling rate in image and ray space (Sec. 3). It is based on the following

components:

• assessing performance-critical numbers of raycasting acceleration techniques,

including the impact of early ray termination (ERT) and empty space skipping

(Sec. 4);

• on the fly prediction of the execution time of upcoming frames using a hybrid

performance model, (Sec. 5);

• and balancing of the computational load among multiple devices in real-time as

well as steering rendering quality towards a user-defined frame rate (Sec. 6).

To the best of our knowledge, on-line prediction of volume rendering performance has

not been published before our conference paper [2]. This work is an extended version

of that paper. In detail, the extensions compared to our conference paper are:

• load balancing between different GPUs as an additional use case,

• resolution adjustment in image space, also combined with tuning in ray space,

• and minor improvements and additions, such as local illumination.

We present and discuss results in Sec. 7 and conclude our work in Sec. 8.
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2. Related work

Volume visualization and frame rate adaption. Volume visualization has been a core

subject in scientific visualization research for several decades. In recent times, raycasting

has turned out to be one of the mostly used techniques, with its parallel nature supporting

GPU and distributed implementations [3]. Salama et al. [4] give an overview on

basic volume rendering techniques, thereby focusing on illumination and acceleration

techniques that we use as well.

Many works have focused on distributed volume rendering, due to the computational

requirements posed by high resolution data sets. The current state of the art in GPU

techniques for interactive large-scale volume visualization is discussed by Beyer et

al. [5]. Especially for distributed rendering, load balancing plays an important role [6, 7].

In this context, Fogal et al. [8] discuss and investigate different algorithms for load

balancing in their work, while Müller et al. [9] demonstrate that zooming on parts

of volume data sets critically impairs load balance during distributed rendering. To

counter this effect, they dynamically reorganize the data distribution in their cluster.

The decision on when to move data to another node is based on a simple cost function

and the actual load of the previous frame. While such cost functions as basis for load

balancing typically work well in the case of gradual changes, sudden changes (e.g.

due to a rapidly adjusted transfer function) cannot be handled adequately, inducing

significant load-imbalance and performance drops.

Rendering systems typically fix either image quality or frame rate during user

interaction. There is some work on techniques designed to keep stable frame rates

for image-based rendering, which we do as well as one application of our prediction

model. Shen and Johnson [10], Qu et al. [11] and others re-use pixel values from

previous frames and use that to achieve stable frame rates. Wong and Wang [12] have

the same goal for real-time rendering applications but use an open-loop approach of

the image generation process underpinned by estimations of its constituents. Using

artificial neural networks and fuzzy models, as well as detailed descriptions of distinct

rendering processes, they relate inputs and outputs in a non-linear model. In contrast,

Woolley et al. [13] take a more simple approach by using metrics, based on image space
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distances to steer progressive raytracing. Frey et al. [14] use a progressive approach

to steer the volume visualization process, thereby focusing on resource management,

response times and sampling errors. Compared to our approach however, none of those

techniques adapt the frame-rate-based on an on-the-fly prediction of the execution time.

Performance prediction. There is a large amount of research in the area of application

performance prediction and modeling for parallel architectures. However, it is mostly

limited to the fields of system architecture and high-performance computing, whereas

the research in (interactive) visual computing, which has its own characteristics and

challenges, is comparably sparse. Various different approaches have been proposed for

performance modeling, including performance skeletons [15], regression [16], genetic

algorithms [17], and machine learning [18]. Those approaches primarily target perfor-

mance prediction in large-scale (HPC) systems. However, visual computing applications

have different characteristics than those systems in that they typically rely heavily on

interaction. The data that is being used for performance modeling typically stems from

either specific hardware characteristics, such as (parallel) computational operations

per second and memory bandwidth; or from empirical measurements, such as frame

execution times and performance counters. Using the latter combined with an analytical

model has been defined as a “semi-empirical” model [19]. In our approach, we employ

a machine learning model to learn from execution time measurements and combine this

with an analytical model, based on known properties of the volume raycasting algorithm.

Therefor, we consider it to be such a semi-empirical model.

There exist various off-line performance modeling tools for GPGPU, which has

many similarities to GPU volume rendering. An overview of the landscape is given by

Madougou et al. [20]. Amarís et al. [21] compare different machine learning models,

namely linear regression, support vector machines and random forests with a BSP-based

analytical model for the task of GPU execution time prediction.

In contrast, work on real-time rendering or scientific visualization incorporating

real-time performance prediction is comparably sparse. The proposed techniques mainly

focus either on performance models for the visualization pipeline [22] or on object-order

rendering algorithms [23, 24]. Ganestam and Doggett [25] perform auto tuning for
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interactive ray tracing, thereby using an analytical GPU architecture model as a basis.

Compared to our work, their approach mainly focuses on ray-tracing and while their

model incorporated caching effects to some degree, other hardware-level algorithms,

such as swizzling, are not covered. In contrast, our model covers those effects implicitly

via the machine learning approach.

Specifically for volume rendering on clusters, Rizzi et al. [26] presented an analytical

model for off-line prediction of scaling behavior. They predict timings for each part of

the overall procedure and sum them up for the overall prediction. Other works have

concentrated exclusively on the compositing of images from different nodes [27, 28]

in distributed volume rendering and analyzed performance theoretically. Our method

mainly differs from the above mentioned approaches, in that we focus on on-line

performance prediction. Furthermore, we target volume raycasting in a workstation

environment.

3. Overview

We perform volume raycasting with front-to-back compositing. For acceleration,

we employ early ray termination (ERT) as well as object-order empty space skipping as

widely used techniques. We also implement gradient-based local illumination, with a

globally defined light direction. Those gradients are evaluated on the fly, using central

differences during our raycast, to limit the memory requirements. At the core of our

technique is a hybrid model that is able to predict the execution time of the upcoming

frame and adjust sampling density in object as well as image space, based on this

prediction. Fig. 1 gives an overview of our approach.

Central to all processing steps are user interactions (cf. top row in Fig. 1): loading

a new volume data set, changing the transfer function, and rotating or zooming the

camera. When loading a data set, the volume is divided into coarse blocks (we use

a resolution of 16

3

voxels per block throughout this paper). We calculate a density

histogram H for each of those volume blocks, representing the distribution of scalar

density values in its respective block. The histograms H have to be updated only if the

volume data set changes. In a next step, we use the user-selected opacity channel Ta
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Figure 1: Overview of our adaptive volume rendering process. The top row depicts possible user interactions

that trigger data generation and assessment methods (second row). The lower part shows our prediction and

parameter tuning approach. Adaption of load distribution (gray) is only used for multi GPU setups.

of the transfer function to derive opacity histograms Ha from the density distribution

histograms H. Again, there is one opacity histogram Ha per block, but in this case

representing opacity distributions instead of density distributions. This step has to be

performed whenever the user changes the transfer function. By directly evaluating the

opacity histograms, we determine which blocks of the low-resolution volume are empty,

and use this information to generate a bounding geometry G that is used for empty

space skipping. Therefor, we use OpenGL to rasterize G and determine the depth of the

foremost (D f ront), as well as the backmost (Dback) fragment of the bounding geometry

G in a single render pass. Those depth values are used as ray entry and exit points. In

order to incorporate estimated effects of ERT in our prediction model, we further adjust

the depth values D
back

to D0
ERT

. In the context of this paper, we focus on achieving

interactive, stable frame rates for a single-node volume rendering application. Therefor,

the user may select a target frame rate t
target

that we aim to achieve and keep at all times

during user exploration. As parameters, we can adjust the sampling rate D along each
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ray and/or the number of rays, to basically trade rendering quality for performance.

For this, we follow an iterative optimization approach, by looping over the following

operations until we approximately predict the target frame rate:

• We estimate, on basis of D0
ERT

and our model M, the time t0 that would be

achieved with the current step size and/or resolution D.

• If the prediction t0 is close to t
target

, we stop the adaption.

• Otherwise, we calculate a new step size and/or resolution candidate for D.

In the case of having multiple computing devices available for rendering, we support

using our prediction for load balancing. Therefor, we adapt the load distribution

L between available devices, based on the adapted sampling rate respective image

resolution D, and the depth estimation D0
ERT . Next, we actually raycast the volume,

by using the obtained value for D (ray and/or image space) and the load distribution

L. Finally, we update our prediction model M by adding the measured values for the

execution time t and the actual depth D
ERT

after ERT, assessed during the actual raycast.

4. Collection of performance-relevant data

Object-order empty space skipping and early ray termination (ERT) are two widely

used acceleration techniques for volume raycasting. Therefor, we focus on those in

particular, for our performance assessment. In this section, we describe our approach

for collecting data that is relevant with respect to those acceleration techniques. We

base our assessment, as well as the actual empty space skipping on a coarse volume

representation. Therefor, we partition the volume into blocks of 16

3

voxels each and

compute a density histogram for each one of them (cf. Sec. 4.1). The histogram data is

used to determine the ray entry and exit points, that define depth D without considering

ERT (cf. Sec. 4.2). We use those values for the prediction as well as the actual raycasting

acceleration. In Section 4.3, we discuss how we incorporate an estimation of ERT effects

in our model, that is based on per block opacity histograms Ha.

4.1. Histograms of volume blocks (H and Ha)

When loading a volume data set V , we logically partition the volume into coarse

blocks of 16

3

voxels. Using all scalar values contained in a respective block, we generate
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density histograms H. Those histograms have a size of 64 bins in our implementation,

because we use data sets with 8 and 16 bit precision (more bins could be necessary for

volumes with higher precision of scalar values). After applying the transfer function,

transparency is a crucial factor for the performance of volume raycasting when using

empty space skipping and early ray termination. We compute opacity histograms Ha

from every density histogram by applying the opacity transfer function Ta : R ! R.

Thereby, we distribute the computed values into 16 bins, mainly because it is more

efficient during our ERT approximation step, without having much impact on the

estimation performance (cf. Sec. 4.3). Each bin b in the original density histogram H

represents a density range [v
min

,v
max

]. We generate Ha from H by basically looping

over those bins b. Thereby, we integrate over the range [v
min

,v
max

] with the user-defined

(opacity) transfer function Ta(b), resulting in opacity values ba:

8b 2 H : ba =
Z vmax

vmin

Ta(b).

Those opacity values ba are then used to select the respective opacity histogram bin ba

of Ha to which we add the number of corresponding elements from the original bin b of

the density histogram H.

We generate one opacity histogram Ha per volume block. Due to the fact that we use

the density values as well as the transfer function, this procedure has to be performed

whenever the user either loads a new volume data set or changes the transfer function.

4.2. Depth assessment (D f ront and Dback)

The amount of empty space depends on the volume characteristics as well as the

selected transfer function. We employ our opacity-mapped histogram Ha (cf. Sec. 4.1)

to implement object-order empty space skipping. For this, we pre-process a bounding

geometry of the volume to determine entry (D f ront ) and exit points (Dback) that are more

closely to the visible data than an otherwise commonly used bounding cuboid.

To decide whether a block of our proxy geometry is visible or not, we use our

opacity-mapped block histograms Ha, by simply evaluating if there are values in bins

for non-transparent voxels. We generate quads for the surfaces of the outermost voxels,

thereby creating a polygon mesh of the volume hull. We rasterize this geometry using
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Figure 2: Front-to-back raycasting along a ray using sampling distance D. Steps in orange are executed only

for ERT estimation (as discussed in Sec. 4.3), the blue ones only for the actual rendering.

a minimum blend equation. This allows us to write the minimum depth as well as the

negated maximum depth values into the frame buffer in a single render pass. Using

this approach, we cannot skip empty space inside a volume (i.e., our bounding hull)

conceptually. This limitation could be circumvented by using a dual depth peeling

approach with multiple rendering passes, at the cost of a higher overhead time (this

remains for future work). The depth assessment step (i.e., the rasterization) has to be

performed whenever the user changes camera parameters, while the generation of the

bounding geometry only has to be performed whenever the transfer function or data set

changes.

4.3. Early ray termination (DERT & D0
ERT)

Early ray termination (ERT) is a simple method that can possibly result in huge

performance gains for volume raycasting. The actual speedup mostly depends on the

used data set and the transfer function. However, compared to the simplicity of the

approach, the a-priori estimation of the actual performance gain is non trivial. This stems

from the fact that a possible estimation cannot be solved locally (e.g., on a per-block

basis), in contrast to the depth estimation. That means we have to consider the full

accumulated opacities along the rays. To nevertheless achieve such an estimation of the

ERT impact on a depth segment D in reasonable time, we implement a modified version

of our standard raycasting procedure.

Fig. 2 outlines the estimation process as well as our general raycasting algorithm by

using two colors for distinction. Here, the orange colored blocks indicate an execution

for the ERT estimation run only (Fig. 2, lower half) while the blue colored ones are only

processed during the actual volume rendering (Fig. 2, upper half). First, we initialize
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opacity and the ray starting position. For the actual raycasting, we also initialize the

color value, while for the ERT estimation, we use the thread-id to create a seed for

our pseudo-random number generator (PRNG). After the setup phase, we process our

raycasting loop, in which we sample at depth d along the respective ray R in front-to-

back order by using step size D. The sampling starts at D
front

, the entry point determined

by our depth assessment (cf. Sec. 4.2), and we sample until we reach D
back

or the opacity

surpasses an ERT threshold value.

For actual volume rendering, we fetch the respective scalar value from the data

set and apply the transfer function, resulting in color and opacity values. For the

ERT estimation pre-run, we use the opacity block histograms Ha (that we also use

for depth assessment), instead of sampling the volume data. In more detail, we start

with generating a pseudo-random number t, using a hybrid Tausworthe RNG (compare

[29]). Next, we determine the block we are currently in with respect to the sampling

position on the ray R(d). Using the opacity histogram Ha(R(d)) of this block and t, we

randomly draw an opacity value a. Thereby, we weight each histogram bin according

to its size, i.e. the sampling is proportional to the number of elements in each bin.

The core idea behind using opacity histograms Ha is to estimate the ERT behavior

in a realistic manner at a drastically reduced cost compared to the actual rendering.

The cost savings especially stem from a largely reduced I/O cost, that is particularly

high due to the typically memory bound nature of volume rendering. We use 16 byte

histograms with one byte per bin for each block (a block aggregates 16

3

voxels) in

our implementation (cf. Sec. 4.1). This has the advantage that the whole histogram

can be obtained using only a single fetch operation on GPUs. This is also comparably

fast across multiple rays due to texture caching. By using random sampling of the

opacity histogram values, we account for the statistical distribution of the actual opacity

values and thereby aim to more closely reproduce the actual raycast. We also sample

much more coarsely along the rays, which also contributes significantly in reducing the

computational cost compared to the full volume rendering. In both raycasting passes,

we adjust the opacity according to the used step size D. This has two reasons: we sample

the opacity histograms for ERT estimation with a much lower frequency than the actual

raycast, that is why we have to adjust opacities, to make them directly correspondent
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to one another. Secondly, as step sizes may be dynamically adjusted (see Sec. 6), the

correction is crucial for producing similar results when using different step sizes (apart

from under-sampling effects).

The raycasting loop terminates if the accumulated opacity ca exceeds a defined

threshold (early ray termination) or the sampling along the ray exits the proxy geometry.

In either case, we use the depth value, as ERT estimation value or training data. In our

actual rendering, we naturally present the pixel color value.

5. Hybrid performance model

We use a hybrid performance model to perform an on-line estimation of the execution

time of the upcoming frame. Our model may be categorized as a "semi-empirical"

performance model (cf. [19]), because we use empirical measurements of previous

execution times as well as known attributes of our volume raycasting algorithm. To learn

hardware-specific characteristics, such as caching or swizzling algorithms, we employ a

machine learning model on the basis of execution time measurements. This part of our

model effectively learns and estimates the average cost s per sample during raycasting

(Sec. 5.1). Combining this approximated sample cost with an estimated depth per ray

D0
ERT

(Sec. 4), we predict the total cost t0 of rendering the upcoming frame (Sec. 5.2).

5.1. Machine learning: prediction of sample cost s

We based our decision of the machine learning technique to use mainly on two

specific requirements. First, the learning algorithm has to be fast enough to work

in realtime, i.e. training as well as evaluation has to be significantly faster than a

single frame execution. Second, the technique should be able to perform non-linear

regression. We decided to employ kernel recursive least squares (KRLS) as technique,

because it fulfills our two requirements, is comparably simple, but nevertheless shows

convincing prediction results [30]. The Dlib machine learning library [31] provides an

implementation of KLRS that we use in our model. One separate machine learning

model is used for each device in the case of employing multiple devices for rendering.

Due to the nature of the KRLS algorithm, weights cannot be transferred directly between

different runs, i.e. we have to build a new model for every data set.
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KRLS is a kernel-based regression algorithm that is able to dynamically include

measurement samples for training during runtime, meaning that the model is dynamically

trained during runtime and does not need any prior training sequence (see Sec. 7.2 for

a discussion of the approximation accuracy and learning speed). Through the use of

the recursive least squares (RLS) algorithm, with the addition of Mercer kernels, non-

linear regression is implemented. The core of the RLS algorithm is an optimization

problem (whose solution is maintained every frame) to find weights w by minimization

as follows:

min

w

 

Â
i

ln�i(yi � xT
i ⇥w)2

!
(1)

Here, (xi,yi) is a pair of training points, where xi denotes a feature vector and yi is a

target scalar value. The “forgetting factor” l may be used to give exponentially less

weight to older samples.

We use linear radial basis functions as kernel function because of their flexibility.

The target scalar value we want to predict is the sample cost s, while our feature vector

consists of several properties that we judge to have a significance for the value of s:

• Viewing angles that we derive directly from the rotation of our arcball camera.

Among others, they impact performance because of different texture respective

memory access patterns caused by the perspective.

• Size of a splatted voxel potentially has a significant impact on texture caching and

also varies with view distance and resolution. It is one of our tuning parameters.

• Step size along rays has similar properties as the size of a splatted voxel, but

in ray space. It is also one of our tuning parameters that defines the number of

overall samples. Changed caching patterns may impact performance here as well.

• Execution time of our ERT pre-rendering approximation step, which is actually

a rough estimate of the rendering time.

• Maximum ray depth as a possible indicator for maximum warp/wavefront pro-

cessing time. All threads (usually 32 or 64) in a single warp/wavefront run in

lockstep on current GPUs, meaning that they must all stall until the last one in the

warp/wavefront has finished.

Overall, those features reflect performance influencing characteristics on hardware

13



level, such as different texture access patterns [32]. Note that all feature are values

that are already available or can be computed with minimal computational footprint,

therefore being well suited for on-line prediction of our volume rendering application.

The implementation of KRLS provided by Dlib provides us with the possibility to

change the parameters for the maximum number of dictionary entries (used to represent

the regression function), a tolerance value, and a g-parameter for our RBF kernel

functions. We determined the following set of well working parameters by using a grid

search auto tuning approach: g = 0.00025, a tolerance of 0.006 and a dictionary limit of

10 million entries.

5.2. Analytic model: prediction of frame execution time

Combining our proxy geometry that is used for empty space skipping (see Sec. 4)

with step size and image resolution, we can calculate the number of samplings we are

going to make during raycasting of an upcoming frame. Therefor, we use the 2D texture

that is generated during the rendering pass of our proxy geometry and generate a full

mipmap stack of this texture. The topmost layer of this stack effectively contains is

the average minimum and maximum depth values d
front

and d
back

. Combined with our

estimated cost per sample s (see Sec. 5.1), we can calculate an estimate of the total

frame execution time t0:

t0 =
7 · (d

back

�d
front

)

D
·s.

Simply put, we compute the average ray length l = d
back

�d
front

(with d
front

denoting the

ray entry point and d
back

being the estimated termination depth in ray space). Dividing

the value l by our step size D gives us the average samplings per ray that we multiply by

factor 7 (one RGBA value, plus six for gradient estimation with central differences), as

well as the cost per sample s to finally gain the estimate of the total rendering time t0.

6. Prediction-based parameter tuning

Our realtime performance prediction model provides us with the basis for various

use cases. In this paper, we present two distinct scenarios for our interactive volume

rendering application. First, we use our model to dynamically steer the sampling
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resolution of or volume raycasting application in ray space as well as in image space,

with the goal to achieve constant frame rates and thereby high responsiveness and/or

execution efficiency. Second, we use our on-line predictions to dynamically distribute

and balance computational load among multiple different GPUs.

6.1. Tuning of sampling resolution

Central to our sampling resolution adaption routine is the definition of a target frame

rate t
target

. By dynamically adjusting the sampling rate in ray space and/or image space,

our algorithm tries to consistently achieve the target frame rate during user exploration.

We use D as tuning parameter, that denotes the sampling resolution along a ray in the

case of ray space adaption, or the image resolution in x and y direction in the case of

image space adaption. We also support a hybrid approach that adapts both parameters

at the same time. Basically, we follow an iterative optimization approach, using linear

extrapolation and bisection during each iteration:

D =

8
>>>><

>>>>:

D
upper

· t
target

t0
upper

if

˜t
upper

< t
target

D
lower

· t
target

t0
lower

if

˜t
lower

> t
target

D
lower

+(D
target

�D
lower

)
t
target

�t0
lower

t0
upper

�t0
lower

else

(2)

In Eq. 2, t0
upper

and t0
lower

denote the smallest (respective largest) estimated timing

below (respective above) t
target

. Analogously, D
upper

and D
lower

stand for the respective

sampling resolution. We use the same approach for adjustment of the sampling resolu-

tion in image as well as in ray space. Note, that in the case of image space adaption,

we normalize relative to the size of a splatted voxel, while also taking into account the

quadratic image resolution adaption. For tuning of the sampling distance along the rays,

we also factor in the additional samples used to evaluate gradients, which we need for

local illumination. Furthermore, we employ the general assumption (as can be seen

in the top two conditions in Eq. 2) that the sampling resolution has an approximately

linear impact on performance. A new candidate resolution D in ray and/or image space

is generated via a linear interpolation, as denoted in the else branch of Equation 2.

Additionally, we introduce a fixed maximum adaption of Dmax = 0.8 ·D per frame,

to avoid overcompensation. This form of damping further helps to avoid lags that may
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Figure 3: Load balancing distribution among three GPUs for different configurations during an interaction

sequence of the Flower data set (cf. Tab. 1). Color coding by GPU: red for Titan X (Pascal), green for GTX

980 and blue for GTX 960 (cf. Tab. 2). The load distribution is adapted dynamically.

result from overestimated sampling resolution adjustments. We only use this limit

while increasing resolution, because overly decreasing it does not have any negative

impact on performance, only on quality. The reasoning behind this is that we consider it

important for the system to be always responsive. However, if the system significantly

underestimates the performance impact, it may happen that the application becomes

unresponsive and therefore cannot adapt to changes until the kernel run finishes. On

the other hand, if the system overestimates the performance, it can quickly re-adapt for

better quality.

6.2. Load balancing

As a second use case, we employ our prediction model for load balancing in a

multi-GPU setup. Conceptually, we use a separate machine learning model Mi (cf.

Sec. 5.1), generating a distinct sample cost estimation si for every available computing

device i. We calculate the load distribution Li for n computing devices using Equation 3:

Li =
(1�z)

n
+z ·

’n
j=1, j 6=i s j

Ân
k=1

sk
(3)

Basically, we multiply the sampling costs si of all devices except the one thats being

calculated, and divide the resulting product by the sum of all sampling costs. z denotes a

damping factor that we use to avoid oscillation effects that are otherwise present during

load balancing. By using a grid sampling approach, we determined a damping factor of

z = 0.5 to yield the best results for the tested data sets.

16



Volume Resolution [voxels] Precision [bits] Courtesy

Chameleon 1024⇥1024⇥1024 16 UTCT

Hoatzin 1024⇥1024⇥729 16 UTCT

Kingfisher 1024⇥1024⇥885 16 UTCT

Field mouse 1024⇥1024⇥975 16 UTCT

Parakeet 1024⇥1024⇥340 16 UTCT

Zeiss 640⇥640⇥640 8 Daimler AG

Flower 1024⇥1024⇥1024 8 UZH

Table 1: Names, resolutions, and scalar precision of all volume data sets used for testing. Representative

renderings are shown in Figure 4.

We partition our image space into 2D tiles with a size of 8⇥ 8 pixels each, to

avoid warp/wavefront divergence (typically, warps on NVIDIA GPUs have a size of 32

threads, wavefronts on AMD GPUs 64 threads). We then use a k-d tree to distribute

the tiles among the available devices, based on the average depth per tile as well as the

determined load distribution Li per device. For this, we use the depth values from our

rendered proxy geometry texture (see Sec. 4.2), more precisely the third mipmap layer,

which corresponds to our tile size. Figure 3 shows four renderings of the Flower data

set during a user interaction sequence, where the image space partitioning among three

distinct GPUs has been encoded via the color channel. Note that the impact of ERT

significantly impacts load balancing that is dynamically adjusted during runtime.

7. Results

We evaluate our approach using multiple volume data sets presented in Table 1 (see

Fig. 4 for representative renderings of the data sets) and compare the results against

a volume raycaster without any parameter adjustments as well as two other adaption

approaches:

• No adapt. A fixed step size relative to the length of a voxel as well as one pixel

per ray are used for sampling. We predict the execution time of each frame using

our method, but do not adjust any parameters.
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Figure 4: Representative renderings of the data sets used for evaluation, ordered as in Table 1.

• Our adapt. We use our method to predict execution times of upcoming frames

and steer the step size and/or image resolution accordingly.

• Last frame. Here, we adjust the sampling of the volume, based on the execution

time of the last rendered frame.

• Two pass. Two rendering passes are conducted, as a very simple form of progres-

sive rendering. In the first pass, a quarter of the sampling parameters from the last

frame is used for rendering. In case of the execution time being lower than half of

the target frame time, we linearly extrapolate the sampling parameters according

to the leftover rendering budget, and render a second time.

We evaluate our approach with two different setups:

• Single GPU system (A) to test general performance characteristics at the example

of single data sets. Evaluation includes the analysis of a frame time diagram

(Sec. 7.1), the overall accuracy of our approximations and prediction (Sec. 7.2),

and the computational overhead of our prediction model (Sec. 7.3).

• Multi-GPU system (B), featuring three distinct GPUs to evaluate our approach

including load balancing. We compare our technique against others for multi-

ple volume data sets (Sec. 7.4), give a detailed analysis of our load balancing

(Sec. 7.5), and compare adaption in image space, ray space and hybrid (Sec. 7.6).

For all adaption modes, the frame target was set to be 30 FPS (A) respective 40 FPS (B),

which is generally considered to be interactive. We recorded a 30 s long sequence of

user interactions using the four modes mentioned above for comparison. The sequences

contain changes of the transfer function as well as rotation and zooming of the camera

in an arcball-style. Rendering samples of different configuration in such a sequence are

shown in Figure 5c-f. The machine learning model used for prediction is trained anew

after the execution of each sequence.

We conducted all measurements on a workstation with an Intel Core i7-6700 CPU,
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GPU (NVIDIA) Cores Clock [MHz] Mem. [GB] Bandw. [GB/sec]

GTX 680 1536 1006-1058 4 192 A

Titan X (Pascal) 3584 1417-1531 12 548 B

GTX 980 2048 1126-1216 4 224 B

GTX 960 1024 1127-1178 4 112 B

Table 2: Core specifications of the GPUs used for testing.

16 GB of RAM and either one (A) or three graphics cards (B), running Linux. Table 2

list the three GPUs we used for rendering, including specifications that give a hint on

computing capabilities of the devices. The GTX 680 was used in the single GPU case,

while the others were used to evaluate load balance.

7.1. Exemplary analysis and comparison of one sequence using a single GPU

Figure 5a shows a frame time diagram for a sequence of rendering the Parakeet

data set (cf. Tab. 1) in four different modes on a single GPU (scenario A). The black

marker line depicts the frame target of 30 FPS. For comparison, Figure 5b shows the

corresponding step size factors (relative to the voxel length) for the respective frames.

We use a fixed step size of 0.75⇥ length of a voxel as step size for the mode without

adaption (cf. blue line Fig. 5). As can be seen in the graph, using no adaption leads to

significant deviations from the target frame rate. This is especially the case for changes

of the transfer function, e.g. frame 20 and 95 (cf. renderings Fig. 5c-Fig. 5f). Even

small changes to the transfer function may have significant performance impacts. This is

the case, when large portions of the volume become (completely) transparent or opaque.

Smaller deviations are usually caused by changes to the camera configuration that are

comparably smooth during typical user interactions.

In comparison, when using adaption based on our model, the frame time stays

around the target, even in the case of larger changes to the transfer function. At the same

time, an overall higher sampling rate can be achieved. Note that our machine learning

model is trained on the fly. However, the frame times for our approach also show a

few outliers with shorter execution times. Those are mainly caused by our conservative
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(a) frame times with different adaption modes (b) step sizes with different adaption modes

(c) frame 20 (d) frame 21 (e) frame 95 (f) frame 96

Figure 5: Plot (a) shows a single sequence at the example of the Parakeet data set. Frame times of our

approach (red) are shown in comparison to methods based on last frame adaption (green), two pass adaption

(yellow) and without adaption (blue). Corresponding step sizes can be found in (b), lower step size means

higher quality. Example pairs of consecutive frame renderings from the sequence are depicted in (c)-(f).

adaption for higher sampling resolution (cf. Sec. 6.1). Some of the outliers can also

be traced back to under- or overestimating the impact of ERT (see Sec. 7.2). Smaller

deviations are probably caused by our machine-learning-based sample cost estimation

s0
. Overall, there are no significant outliers with longer frame times, meaning that

during the sequence, interactivity is granted, enabling a high responsiveness for the user.

In comparison, the adaption mode based on the last frame (green curve) shows huge

frame time spikes that may cause poor responsiveness and jerky motions during user

exploration. Those outliers are mainly caused by changes to the transfer function, which

the last frame approach cannot handle by design (basically, it has one frame delay). For

those cases, the sampling density is naturally higher for the last-frame-mode, while

otherwise being on a similar level compared to our prediction technique.

We also compare our approach against a two-pass-mode (yellow curve). This mode

has the advantage, that the frame target is hardly ever exceeded. The major drawback of

this technique however, is the much lower sampling rate that eventually leads to a lower

overall rendering quality. This is caused by the lower rendering budget for each frame,
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(a) approximation efficiency of sample count and cost

(b) real (c) estimation

(d) difference ⇥4 (e) rendering

Figure 6: Plot (a) depicts the estimation accuracy for average samples per ray (green) and sample cost s

(blue/red) at the example of the Parakeet sequence (cf. Fig. 5). Comparison of measured ray termination

depths (b), and our estimation (c) (both mapped to gray values), for the Hoatzin data set (cf. Tab. 1) is shown.

Subfigure (d) shows the difference of (b) and (c) with 4⇥ intensity, while (e) shows the respective rendering.

because of the time requirements of the pre-rendering pass. That means, in general for

this two step approach, the available rendering time cannot be exploited fully, because

the results of the first pass do not contribute to the rendering result.

7.2. Accuracy of approximations and predictions

Figure 6a shows the difference of our prediction (red) compared to the measurement

(blue) of the sample cost s of the same rendering sequence as in Section 7.1 to show the

general efficiency of our approach. As can be seen, our machine learning model is able

to make fairly accurate predictions of the sample cost after learning only a few samples

(30 frames). The differences are also reflected in the overall prediction (cf. Fig. 5a).

Figure 6a also shows the difference between the estimated number of samples per

ray and the measured number (green). Here, the discrepancies are caused by under- or

overestimating the impact of early ray termination on the number of samples. This is

probably because our probabilistic estimation approach may yield improper results for

some difficult cases.

For investigating the efficiency of our depth estimation including ERT, Figure 6

shows the measurement (b), our estimation (c) and the difference (d) of a rendering of
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Action Required when Maximum time [ms]

Generate histograms Loading data set 1000

Generate bounding geometry Transfer function changes 3.551

Generate opacity histograms Transfer function changes 0.053

Depth assessment Camera changes 2.680

ERT approximation Camera changes 0.028

Training Frame was processed 0.015

Single prediction Adjusting resolution 0.001

Table 3: Detailed maximum runtime measurements of the steps needed for our prediction on an NVIDIA

GTX 960 after a running time of more than a minute and over 1000 learned samples.

the Hoatzin data set (e). The intensity of (d) has been scaled by factor 4 to emphasize

the differences. As can be seen, the overall depth estimation is fairly accurate although

there are some discrepancies, mainly at the edges. Those are caused by the difference

between the proxy geometry (used for our pre-rendering step) and the original high

resolution data. Other differences can be caused by our stochastic methods (cf. Sec. 4.3).

7.3. Computational overhead of our prediction model

One important aspect of our prediction approach is the realtime capability. That

means that the computational overhead is significantly lower than actually rendering

the volume data. We explicitly designed our pipeline to provide interactive exploration

capabilities, e.g. training, which is done on the CPU, and pre-processing, run inter-

leaved. Furthermore, it is conceptually possible to do the pre-processing steps (i.e.

depth assessment and ERT approximation) on a different device than the actual frame

computation. For instance, one could use a GPU that is integrated in the CPU for the

pre-processing steps and one or several dedicated graphics cards for rendering. Table 3

gives an overview of the processing times upper bounds of the various steps needed to

perform our prediction for the chameleon data set (cf. Tab. 1) with 1024

3

voxels on the

NVIDIA GTX 960 (the slowest tested GPU). Figure 1 gives a structured overview on

the various steps.
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Figure 7: Results of sequence measurements for different volumes. A smaller average step size factor indicates

better quality, while a lower RMSE indicated a better performance (i.e., closer to the FPS target). Maximum

absolute errors indicate worst case performance.

As listed in Table 3, even for a single midrange GPU, the computational overhead

for our prediction model is comparably low. For the tested volume with a resolution

of 1024

3

voxels, generating the bounding geometry (only needed when changing the

transfer function) and performing the depth assessment has a combined execution time

of about 6ms, a fraction of an interactive frame time. Training and prediction are

even significantly faster. Overall, the measurements show an acceptable computational

overhead, that implies a smoothly on-line usage of our prediction method for average

workstations.

7.4. Evaluation of multiple rendering sequences

We conducted detailed measurements of interaction sequences for seven different

volume data sets listed in Table 1. Individual sequences were created for each data set

separately, to capture different scenarios and last 30 s each. In Section 7.1, we give

an exemplary, detailed analysis of one of these sequences. In contrast to the sequence

presented in Section 7.1 however, we conducted the measurements discussed in this

Section using system setup (B) with three GPUs (cf. Tab. 2) and our load balancing

enabled. All following measurements were conducted on this system. Integration step
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size was set to 0.25⇥ voxel length, for the mode without adaption and the target frame

rate was set to be 40 FPS (0.025 ms frame time). The idea behind those changes is to

increase rendering complexity to stress the three GPUs sufficiently. The viewport is

the same with 1024

2

pixels and we adjust the ray sampling size for the three adaption

modes.

Figure 7 gives an overview of the results obtained during our measurement series.

As an indicator of the rendering quality we show the average step size along rays during

the whole sequence (smaller is better). To judge the prediction accuracy, we use the

root-mean-square error (RMSE), as a measure for the difference of predictions (ŷt ) and

measurements (yt ) across a sequence with n frames:

RMSE =

r
Ân

t=1

(ŷt � yt)2

n
. (4)

As a third quantity, we show the maximum absolute error above the frame target,

meaning the biggest absolute discrepancy between the target execution time and the

measured time. This is an indicator of the worst case performance, as a high error

usually results in lags or jerky motions during user exploration. One of the main goals

of our technique is to avoid such high frame times.

As can be seen in Figure 7, our approach (red) has a comparably low RMSE

(meaning a low deviation from the target frame rate) with only the two-pass-technique

(yellow) being better in some cases. At the same time, the step size (rendering quality)

is significantly better than the two-pass-mode in all cases and only slightly worse than

the last-frame-mode (green) in some cases. The mode without any step size adaptations

(blue) performs best in terms of rendering quality, but has a significant deviation from

the frame target for all sequences. The worst case performance of the two-pass-mode

(cf. Sec 7.1) can be observed in the maximum absolute error, while our approach

performs fairly well in this regard. Naturally, the two step mode is better than ours. The

results reflect the ones observed and discussed in Section 7.1 and the reasonings are

basically the same. Overall, our measurements show, that our technique keeps a good

balance between rendering quality and speed while guaranteeing responsiveness during

interactive exploration of the volume data set.
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(a) Our load balancing (b) Static balancing (empirical)

Figure 8: Comparison of frame times (solid lines) and distribution (stacked areas) among three different

GPUs: one shows measurements with dynamic load balancing based our prediction (a); the other one depicts

a static load distribution (b), based on empirically determined average sample costs

¯si per device.

7.5. Load balancing

We compare our load balancing against a static distribution, based on all our empiri-

cal measurements, i.e. the average sample cost over all measured data sets respective

sequences. Figure 8 shows the frame diagrams of the Chameleon and the Flower data

sets (cf. Tab. 1) for those two modes. In the plot, the solid lines depict the frame times

for the three tested GPUs (cf. Tab. 2), while the stacked semi-transparent plots show the

(dynamic) relative load distribution among the GPUs.

Although the overall trend is the similar, as can be seen in Figure 3, our load

balancing generally outperforms the static approach. However, the dynamic balancing

is not without flaws. Immediately noticeable is the oscillation pattern, which is common

to load balancing methods. We try to counter this effect with our damping factor. We

found a factor of 0.5 to work best across the tested volumes, while selecting a higher

value resulted in converging of the load balancing and static versions, while lower values

worsen the oscillation. In addition, the problems of our model (discussed in Sec. 7.1)

also show in the load balancing. Yet throughout all tested volumes, the achieved load

distribution efficiency (i.e., how well the timings of all GPUs match on average) is about

18% better for our load balancing approach, compared to the static distribution. We

could show that our prediction approach is well-suited for load balancing. However,
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Adaption type MSE SSIM PSNR

Image space 34.256 0.981 37.215

Ray space 20.563 0.988 40.237

Hybrid 20.170 0.992 40.747

Table 4: Image metrics for adaption in image space, ray space and hybrid (both), relative to a reference

rendering without adaption of the Zeiss data set. All values are averaged over the whole sequence.

Figure 9: Comparison of adaption in image space vs. ray space vs. a hybrid for one frame of the Chameleon

data set rendering sequence.

improvements w.r.t. damping and prediction accuracy could further improve the results.

7.6. Image vs. ray space adaption

Using our prediction approach, we can dynamically steer the rendering quality by

adapting the sampling resolution in ray space and/or in image space. In this section,

we present our evaluation of the image quality when adapting the resolution only in

ray space vs. only in image space as well as a hybrid approach where we change both

parameters at the same time. We use three measures to evaluate the image rendering

quality: the mean square error (MSE), which is basically the same as the RMSE (see

Eq. 7.4) but without the square root, the structural similarity (SSIM) [33], and the peak

signal-to-noise ratio (PSNR). Table 4 gives average numbers for the three measures

during the whole sequence of the Zeiss data set (cf. Tab. 1).

Figure 9 shows a direct comparison of a single frame for the three methods against a

reference rendering. The reference is rendered with a image resolution of 1200

2

pixels

and an integration step size of 0.1⇥ voxel length, the adapted sampling resolution is at

most 1024

2

rays respective a step size of 0.25⇥ voxel length. As can be seen in Figure 9
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and Table 4, the ray space adaption generally outperforms the image space one, in all

metrics. The hybrid approach yields similar results or slightly outperforms ray space

adaption. The exemplary renderings in Figure 9 show that a low integration step size in

ray space may result in sampling artifacts, that can be partly avoided when using the

hybrid adaption and therefor lead to higher image quality. This is especially the case

for data sets containing sharp edges and thin surfaces where under-sampling may occur

more easily, as is the case for the Zeiss data set (cf. Tab. 4/ Fig. 4).

7.7. Discussion of limitations and extensibility

We demonstrated that our technique works well for the tested datasets and we are

able to stay within the range of a user-defined frame target even for difficult to predict

cases as well as use the prediction for load balancing between different GPUs. However,

our approach has also some limitations. For some cases, especially for high step sizes,

our model produces a slightly worse predictions than the two-pass or last-frame-modes.

This is mainly because of an underestimation of ERT impact and usually results in a

faster frame time. Those naturally do not cause any lags in interactivity but may result in

a slightly lower rendering quality. Furthermore, our machine learning model sometimes

produces inaccurate predictions for the sample cost, that we assume to be the result of

not yet learned configurations. Those inaccuracies also influence the load balancing

performance.

Possible measures to meet those issues in the future could be to include uncertainty

handling, e.g. in the form of an additional feature that evaluates how different ("far

away") a new configuration is from all previously learned samples. Another possibility

would be to perform a short learning run after loading a data set that covers several

important configurations. However, it is hard to determine which configurations are

interesting, because it highly depends on the data set. A third option to improve the

quality of the prediction would be to transfer learned features between data sets, which

is not possible for the currently used KRLS machine learning algorithm. As shown

in Section 7.1, even after a short period of time, the algorithm already shows a high

prediction accuracy.

The load balancing use case shows promising results. Raising the general prediction
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accuracy (as mentioned above) could allow for a lower damping factor and thereby

improve the balancing. A general drawback of this approach is the mandatory availability

of the data on all devices to avoid costly transfers via the PCI-e bus, so sufficient memory

on all devices is required. Adaption of the sampling resolution in image space seems

to result in inferior quality opposed to resolution adjustment in ray space. However, a

hybrid adaption can improve the perceived quality, especially for data sets with sharp

edges and thin structures, where an under-sampling in ray space may lead to artifacts. A

more refined sampling technique in image space (e.g., with non-regular patterns) could

possibly improve the results for this adaption method.

8. Conclusion

We presented an integrated approach for predicting rendering performance of a

volume raycaster on-the-fly and use this to perform load balancing as well as dynamic

tuning of the sampling resolution. Using our technique, we can adapt the image sampling

and distribute computational load among different devices, to significantly reduce lags

and jerky motions during interactive exploration. To overcome those unpleasant effects,

we proposed methods to explicitly assess the impact of acceleration techniques on the

raycasting performance. Thereby we also employ a novel technique to estimate the

effect of early ray termination. We introduced a hybrid performance prediction model

that is capable of predicting accurate frame execution times on-the-fly. The model

consists of two parts: in an analytical fashion, we uses the assessed acceleration data

together with general information on the data set and sampling density for a depth

estimation, and combine this with an estimate of the cost per sample by using a machine

learning technique. We demonstrate the usability of our technique by means of two use

cases. For the first one, we adjust the sampling density in ray space and/or image space

to reliably meet user-defined performance requirements. This resulted in stable frame

execution times, even for sudden large changes to the transfer function, while at the

same time keeping rendering quality at a high level by adjusting sampling resolutions

according to predicted performance requirements. The second one is prediction-based

load balancing among multiple GPUs, with the goal to consistently maximize hardware
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usage and thereby improve rendering speed and quality.

In future work, we want to further improve the generality of our approach by

integrating different data representations, interactive illumination design, and additional

acceleration techniques. Additionally, we aim to integrate a form of uncertainty handling

to further improve our predictions. As a next step, we also think of evaluating the

transferability of our model to other rendering techniques.
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