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Fig. 1: Overview of our visualization approach for analyzing bubble formation in porous media. (a) Detection of bubbles in a porous
medium and extraction of porous structures (Sect. 3); (b) morphology-based bubble classification (top: colors indicate different
clusters) (Sect. 4.1) and identification of similar structures for a bubble of interest (bottom: brightness of pink denotes similarity to
the structure of the green bubble) (Sect. 4.2); (c) clustering of bubbles (blue) according to their connectivity to the surrounding
structure (yellow); (d) registration of bubbles and structures, shown from six different views (Sect. 5); (e) integrated visualization of
multiple bubbles and structures (bubble and corresponding structure are depicted in the same color, Sect. 6).

Abstract—We present a visualization approach for the analysis of CO2 bubble-induced attenuation in porous rock formations. As a
basis for this, we introduce customized techniques to extract CO2 bubbles and their surrounding porous structure from X-ray computed
tomography data (XCT) measurements. To understand how the structure of porous media influences the occurrence and the shape of
formed bubbles, we automatically classify and relate them in terms of morphology and geometric features, and further directly support
searching for promising porous structures. To allow for the meaningful direct visual comparison of bubbles and their structures, we
propose a customized registration technique considering the bubble shape as well as its points of contact with the porous media
surface. With our quantitative extraction of geometric bubble features, we further support the analysis as well as the creation of a
physical model. We demonstrate that our approach was successfully used to answer several research questions in the domain, and
discuss its high practical relevance to identify critical seismic characteristics of fluid-saturated rock that govern its capability to store
CO2.

Index Terms—3D volume rendering, bubble visualization, porous media

1 INTRODUCTION

Carbon dioxide storage in subsurface geologic formations is one option
to reduce significant levels of CO2 emitted to the atmosphere [19].
For this, carbon dioxide is stored in permeable sandstone reservoir by
injecting supercritical CO2 into water-saturated porous sandstone for-
mations. The injection process is performed under controlled pressure-
temperature conditions and depicted as CO2 sequestration [42]. Carbon
dioxide has been injected safely into subsurface reservoirs for many
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years for Enhanced Oil Recovery [5]. Fundamental science and en-
gineering principles indicate that CO2 sequestrated systems should
be feasible and safe: the energy cost of preparing CO2 for injection
can be as low as a few percent of the heating value of the original
fuel. However, long-term CO2 storage does carry a risk of possible
leaks to the atmosphere and, in addition, subsequent hydro-chemical
processes could lead to an evolution of thermodynamical conditions.
The costs and risks are not insurmountable, but research is required to
make these concepts economically and technologically feasible. It was
recently shown [7] that local wave scattering, e.g. caused by resonance
effects, affects the effective velocity dispersion and intrinsic attenuation
of fluid-saturated porous media. In order to predict the behaviour of
geological formations or to identify the properties of the subsoil in
seismic prospecting methods, more realistic coarse-grained continuum
models have to be developed taking into account relevant pore-scale
effects like bubble resonance.

In this paper, we concern ourselves with visualizing CO2-bubbles
which are de-gased from the pore-fluid (water) caused by disturbed
thermodynamical conditions, i.e. a decrease of the pressure state [27,
28, 34, 35]. Even a small volume fraction of gas bubbles changes
effective coarse-grained seismic properties (wave dispersion and atten-



uation) drastically [7, 23]. Related abnormal velocity dispersion and
attenuation phenomena could be used in reservoir monitoring as a new
evidence for the amount of de-gased CO2 and therefore as a ”leakage”
indicator. Local resonance effects of single CO2 bubbles depend on
several (geometrical) factors like the volume of the CO2 bubbles, their
specific geometrical shape and their trapping conditions, i.e. the local
morphology of the surrounding pore space. Image-based direct nu-
merical simulations of bubble resonance properties are a challenging
task, as necessary geometrical information of local bubbles and bubble
distribution in the rock is missing [17], [18]. High-resolution XCT
scans performed under controlled pressure-temperature conditions as
the ones we will discuss here, are very rare. Still, a physical-based
pore-scale interpretation of these phenomena is missing and could only
be achieved by a detailed bottom-up characterization of the involved
properties on the bubble or pore scale of the porous media.

In a collaborative effort of visualization and domain scientists, we
designed a visualization-based analysis approach that allows us to ad-
dress this. Instead of only observing the effect on a general macroscale,
we propose to visually study individual CO2 bubbles in the context of
their local corresponding structures to understand fundamental, small-
scale characteristics, patterns, and properties. Most research questions
revolve either directly or indirectly around the formation of individual
CO2 bubbles in the porous material. Below we list the most critical re-
search questions RQ 1-4 derived either directly or indirectly around the
formation of individual CO2 bubbles in the porous media that needed
to be handled, and provide background to motivate why they are of
crucial interest in the domain:

RQ1 (bubble locations) Where do bubbles form in porous media?
Knowing the potential positions of (gas) bubbles in the pore
space allows for a potential estimate about the numbers (and
locations) of bubbles in a unit cell. If possible bubble locations are
known, generic worst case scenarios with the maximum numbers
of bubbles could be performed (highest amount of attenuation).

RQ2 (bubble size distribution) What is the bubble size distribution?
The bubble size is directly linked to the resonance frequency of
a single bubble, cf. phase velocity depicted in Figure 11. Elasto-
dynamical simulations taking into account the shape of the bubble
and the morphology of the surrounding pore structure provide
realistic resonance properties. If we know the bubble size distribu-
tion in a unit cell, we could additionally calculate the distribution
of resonance frequencies and the coarse-grained dispersive char-
acteristics like e.g. phase velocities and attenuation (cf. [7, 25]).

RQ3 (structure influence on bubble) What kind of (governing)
boundary conditions for bubbles exist?
In porous geomaterials like sandstone, we expect that bubbles
have a non-spherical geometry, and are potentially attached to
one or more solid surfaces. Pinned bubbles or bubbles attached
to the surface of the pores, have different resonance frequencies
(eigenmodes) compared to free, i.e. non-attached bubbles. These
eigenforms/eigenfrequencies can not be calculated analytically
anymore and need sophisticated numerical modeling and simula-
tions of boundary value problems.

RQ4 (bubble from structure) Can we determine from the pore space
morphology size and boundary conditions of bubbles?
If we have the link between pore space morphology and boundary
conditions of bubbles, we would then extract bubble positions,
sizes and boundary conditions, and directly perform numerical
finite element calculations for the determination of resonance
frequencies. Finding a link between pore space morphology
and bubble size/location is challenging and strongly depends
on the type of porous media. Nevertheless, such a link allows
for high resolution XCT scans which are necessary for small
bubble diameters and subsequent medium resolution scans for
representative pore morphologies where potentially the bubbles
can not be resolved.

To answer the above these research questions, we need to overcome a
variety of visualization technical challenges. First of all, we work with

high-resolution data derived from XCT which the size of data induces
issues of data handling. A challenge on its own is the reconstruction
of particularly the bubbles due to the small size in combination with
measurement artifacts and noise in the XCT scan, as well as the low
bubble structure contrast of the images overall. More importantly, in
our analysis task, we have to obtain knowledge from the inside of a
complex, dense porous medium structure. This means that any di-
rect visualization technique would suffer from significant issues due
to occlusion and visual clutter. While this in itself is already quite
challenging, how to extract quantitative characteristics that represent
the critical morphology and geometric structure features from digital
images is also a challenge. All these aspects render standard volume
visualization techniques mostly ineffective for addressing our research
questions.RQ4 (bubble from structure) essentially addresses an am-
bitious long-term goal and addressing it could significantly advance
research in the field, however, it us currently unclear to what extent
and how this can be achieved. We can only begin to tackle this in the
context of this paper, so in the context of this paper we rather provide a
starting point for this investigation and a direction for future work.

To resolve these challenges and address our research questions,
we present our approach for the visual analysis of CO2 sequestration
processes, that consists of the individual parts discussed below:

• we first detect and segment bubbles with their surrounding vol-
umes from an XCT dataset (Sect. 3);

• we then classify bubbles into several clusters with respect to
morphology (cf. Sect. 4.1) . . .

• . . . and propose an efficient approach to identify both similar
porous medium structures and bubbles (Sect. 4.2 & Sect. 4.3);

• we propose a registration approach both for bubbles and structures
to allow for a meaningful direct visual comparison (Sect. 5);

• we finally use our introduced techniques for the visual analysis of
bubble formation and address our research questions (Sect. 6).

2 RELATED WORK

Visualization at material interfaces. A large body of work on ma-
terial interface visualization concerns itself with the extraction of in-
terfaces and presents information directly on these extracted surfaces.
In particular, numerous works have been proposed in the context of
volume fraction data in multi-fluid simulations. Meredith et al. [24]
propose a new algorithm specifically for reconstructing material in-
terfaces for visualization and visual analysis. For material interface
reconstruction, Prilepov et al. [29] employ a patch-based gradient field
approximation to generate a volume fraction function within each cell
of the data set, which can be used to generate a smooth interface that
preserves the respective volume fractions. Lindholm et al. [21] combine
multiple classifiers to enhance the classification of different materials
and their respective boundaries. In contrast to these visualization ap-
proaches which focus on extracted surfaces, we will pursue a more
general and comprehensive approach by considering the volume in the
vicinity of the interface.

Visualization of porous media. For analyzing defects in XCT data,
Reh et al. [30] present MObects, an approach to explore a high number
of individual objects in a data set, which is demonstrated in particular
for analyzing pores in carbon fiber reinforced polymers. For the same
application area, Weissenböck et al. [40] further propose a new visual
analysis tool to interactively explore features of fiber properties. Grau
et al. [10] presented a method to analyze pore connectivity inside rock
formations, which supports the exploration of porous structures via
illustrative visualization. Gyulassy [11] investigate the properties of a
deforming porous structure based on topological features, and produce
a skeleton representation to examine changes over time. Ushizima et
al. [37] describe tools that provide measurements of porosity as well
as permeability estimates using geometric and topological descriptors,
and visualize pore structures and networks. On this basis, they discuss
potentials of the material for fluid storage (and briefly touch upon CO2
storage), yet, in contrast to this work, this is only based on the porous
material itself and does not directly analyze actual bubble formations.



Fig. 2: Extracted bubbles and structures (color denotes bubble id).

Providing a overview on the topic, Heinzl et al. [12] give a comprehen-
sive overview on visual computing in the domain of material science
in general. Also, standard volume visualization techniques are widely
used to analyze porous media data from simulations and measurements.
Beyer et al. [4] review techniques for GPU-based volume visualization
with a focus on the rendering of large-scale data. In the context of this
project, large volumes of scalar data of varying precision will result
from both XCT scans and simulations.

Focus+Context visualization. The core idea with focus+context
visualizations is to enable viewers to see the object of primary interest
presented in full detail while at the same time providing an overview
of the surrounding information. Various techniques have been pre-
sented to account for the varying importance of different areas of the
volume [38] and to simplify visualizations consisting of multiple com-
ponents [3]. Wu and Popescu [41] present a framework for designing
multi-perspective focus+context visualizations and adapt the camera
to alleviate occlusions. Krüger et al. [16] derive features from images
and focus their visualization on these while preserving contextual infor-
mation. They also provide a point-and-click interface for interactively
selecting and exploring structures in the data.

3D Shape Registration. 3D shape registration aims at putting mul-
tiple shapes into a common coordinate system to better understand their
geometry. A common approach is to first find their correspondence by
comparing shape features to estimate a coarse transformation matrix,
followed by the Iterative Closest Point (ICP) algorithm [33] to further
refine it. According to the regions that extract features, approaches may
be classified into global and local methods. Global methods describe the
character of the whole shape, for example, shape distributions [26] for
rigid objects and Reeb graphs [14] for articulated objects. In contrast,
local methods encode local shape features which can lead to finding
more reliable correspondences Gelfand et al. [9] adopt the covariance
matrix to constrain the eigenspace such that a set of points which affect
both translation and rotation are used. Tombari et al. [36] propose a
new 3D surface descriptor that conceptually combines two categories of
methods, namely signatures and histograms. In this work, we employ a
local registration approach on the basis of ICP that has explicitly been
designed for good performance in our application scenario.

3 SEGMENTATION OF BUBBLES AND POROUS STRUCTURES

Our XCT dataset captures the CO2 bubble sequestration process from
an experiment in which fluid with gas is injected into a (porous)
Fontainebleau sandstone under disturbed thermodynamical conditions.
Our dataset has a resolution of 2560 × 2560 × 2160 voxels with a
resolution of 0.65 µm per voxel. The radius of the bubbles typically
ranges between 13 µm and 26 µm (i.e., around 20 to 40 in terms of
voxels). While in the experiment several measures are taken to yield
results with as high contrast as possible, bubble segmentation still is
challenging and requires manual input by an expert for good results. In
addition, the datasets are often reduced in both resolution and consid-
ered area to reduce computation time and artifacts (e.g. [1]). Recently,
a complex mixed volume reconstruction method has been presented,
where first the solid phase is taken care of, and then gas and fluid phases
are segmented using a Paganin filter reconstruction [39]. However, in
our experience, this results in unsharp phase boundaries which add high
uncertainties in further computation steps.

In our work, to get an initial impression of the data, we manually
labeled an XCT image slice and constructed the intensity histograms of
the three phases: bubbles, fluid and solid porous structure (cf. Figure 3).
Here, Gaussian curves are fitted to intensity values by calculating the
mean and standard deviation of each phase. At this example, we see

Fig. 3: Bubble detection and porous surface extraction. (a) Histogram
of three phases in one bubble region of the XCT image. (b) Bubble
detection (white rectangle) (Sect. 3(1)) and (c) precise segmentation
(Fig. 3(2)). (d) Rendering of a 3D reconstruction.

that most intensity values lie in a small value range (between 150 and
160 in our 16 bit resolution data). Despite all efforts to maximize the
contrast in the setup of the experiment, this results in a particularly
challenging problem for automatic bubble extraction. Below, we dis-
cuss our customized segmentation approach that runs automatically,
yet still allows for manual adjustments by experts in certain phases to
handle inadequate results. Our approach essentially consists of two
steps, conceptually following the approach of Furukawa et al. [8]. We
first detect regions of interest (ROI) in which bubbles occur using statis-
tical segmentation [43] (1) and then carry out the precise segmentation
within each ROI with a level set approach [20] (2).

(1) Bubble Detection and Feature Extraction. Given the XCT
image slices as input, the first step of our method is to detect the ROI
in which bubbles occur. For this, we employ a statistical segmentation
method, which segments images by labeling voxels based on the in-
tensity distribution of our three phases [43]. For initialization, we use
k-means to cluster and label voxels accordingly in all the image slices
into bubbles, fluid and solid structure. The intensity distribution is mod-
eled by a Gaussian Mixture Model, whose parameters are iteratively
estimated using an Expectation-Maximization algorithm (EM). The
E-step labels pixels, while the M-step adjusts the Gaussian parameters
considering the updated labels. This is repeated until the maximum
iteration reached or algorithm converges (cf. [43] for a detailed dis-
cussion of this step). We then construct a bubble set B. For this, we
cluster coherent regions of bubbles, and create a respective ROI for
each (e.g., similar to [43]). The ROI along each axis is twice the size
of the bounding box around the bubble, and it is positioned such that
the bubble is in its center. According to our experience, this suffices to
meaningfully extracting the porous structures around a bubble. After
this step, the results are manually checked, and incorrectly identified
bubble ROIs are discarded.

(2) Segmentation and Surface Reconstruction. Next, solving our
research questions requires accurate representations of the bubble and
porous structures. We use a level set method to achieve this, as they
can efficiently segment objects of both varying shape and intensity.
Each level-set function represents one object (e.g., a bubble), and
the evolution equation for each level-set function is derived using
the variational approach, which yields good results for segmenting
images with weak boundaries (please cf. [20] for a detailed discussion).
We initialize the level-set function using the bubble bounding box of
ROI (from step (1)). After the level-set function is converged, we
conceptually obtain an isosurface that describes the boundary of the
object. With the respective isovalue, we generate a triangle mesh using
Marching Cubes [22] for both bubbles and structures.

4 MORPHOLOGY AND SIMILARITY

In this section, we present automatic analysis techniques that allow
addressing different types of research questions. First, we analyze
bubbles with respect to their morphology (cf. Sect. 4.1). Here, iden-
tifying the different types of bubbles occurring in the porous media
along with their frequency is of high interest for the analysis. Next,
for further investigation, we introduce an algorithm that can identify
similar porous structures (cf. Sect. 4.2), which is particularly important
to analyze the influence of a structure on the type of occurring bubble.



Fig. 4: Searching for nearest (i.e., most similar) structures in the porous
medium. (a) The exemplar-structure feature set Fe consists of de-
tected bubbles and their surrounding structures. (b) An extended neigh-
borhood is considered with the exemplar-structure feature cube fe.
(c) Identify the most similar feature cubes fo in the data by (d) compar-
ing against the desired-structure feature set Fo.

Akin to this, we also present an approach that, starting from a particular
bubble of interest, enables us to find bubbles with similar geometric
shape (cf. Sect. 4.3).

4.1 Morphology-based Bubble Classification

A crucial question for the overall analysis in the domain is to identify
what kind of porous media are suitable for CO2 storage. As input
knowledge from the domain (and as can be seen from the extracted
bubbles), we know that stable bubbles need to be attached to porous
structures at some points. For the analysis, the Euclidean distance
between bubble and surrounding structures is calculated to separate
the bubble surface into two areas. The bubble surface area exhibiting
a distance to the medium below a certain threshold is denoted as the
Connected-surface (i.e., it is classified as being attached to porous
structure). In reverse, areas with distances above the threshold (distance
larger than 5 voxels) are denoted as Free-surface, as they can freely
move and deform (e.g., expand or shrink). This threshold is used to
yield robust results even in cases of small inaccuracies stemming from
the segmentation process. According to our observations, Connected-
surfaces detected with this process that only have small contact areas
with the surface constitute false positives. To address this, we only
count those cases in which the identified area of the Connected-surface
is at least 20% of the total bubble surface area.

The determined Connected-surface areas capture crucial bubble char-
acteristics and provide important insights for the analysis of porous
structure boundary conditions. We count the number of Connected-
surfaces for each bubble and also fit planes to every Connected-surface
via least square optimization. The fitting planes are regarded as impor-
tant features and are used in the morphology-based classification. In
particular, we utilize the number of fitting planes to classify bubbles
into three clusters. In C luster1, only one side of a bubble connects to
a porous medium (i.e., there is one fitting plane). For C luster2, there
are two contact areas of the bubble with a structure (two fitting planes),
and finally, in C luster3, three parts of a bubble connect to a porous
medium (three fitting planes). Due to the nature of the investigated
experiment setup, we only identified up to three Connected-surfaces
for a bubble in this work, but theoretically more could occur and would
be detected by our approach in different setups (e.g., featuring larger
bubbles). The observation of the limited bubble connectivity in our
experiment already constitutes an interesting finding by itself.

4.2 Similarity of Porous Structures

Next, we propose our approach to automatically search similar struc-
tures in a porous medium. This addresses one goal of our visualization,
which is to identify (and predict) all the possible locations in an un-
known porous medium in which (a certain type of) bubbles can occur.
Correspondence structures are regarded as boundary condition. Our
algorithm could find similar local pore structures as one specific kind
of cluster, which could be used for resonance effects experiments under

Algorithm 1 Determine the similarity of all local structures in the
porous medium (discussed in Sect. 4.2).

Input:
Exemplar bubbles set Db;
Exemplar correspondence structures set Ds;
Desired porous dataset Do;

Output:
Ensemble of nearest neighbor structure cubes xs ∈Xs;

1: Build exemplar-structure feature set Fe, fe ∈Fe;
2: Build desired-structure feature set Fo, fo ∈Fo in Do;
3: for each fe ∈Fe do
4: for each fo ∈Fo do
5: Compute similarity error δ = ‖ fo− fe‖2;
6: Sort with respect to similarity error δ ;
7: Construct the nearest similar structures set Xs, xs ∈Xs;
8: for k nearest similar structures in Xs do
9: if bubble occurs then

10: Add bubble xb to Xb, Nb=Nb+1;

similar boundary conditions. The individual steps of our approach are
outlined in algorithm 1, and discussed in detail below.
(1) Build exemplar-structure feature set Fe (Line 1). The exemplar
bubble set consists of the set of identified bubbles (Db) and their re-
spective surrounding structures (Ds). In this step, we aim to extract a
simple representation of the porous structures featuring bubbles. For
this, our algorithm first chooses the central voxel of each bubble as an
anchor (colored in red in Figure 4(a)). We then sample our exemplar-
structure feature cube fe around this anchor voxel (Figure 4(b)). The
size of the cube is chosen to be two times the size of the bounding
box of the bubble to adequately capture the surrounding structure (like
ROIs in Sect. 3). The features cubes fe of all bubbles then constitute
the exemplar-structure feature set Fe.
(2) Build desired-structure feature set Fo (Line 2). We then
sparsely sample the desired porous dataset Do (Figure 4(c,d)), with
the center voxels being colored in red. Each desired-structure feature
cube fo is generated by starting from the central sampling voxels and
then incorporating neighboring voxels, which is shown in Figure 4(c).
We further rotate around these center voxels in x, y and z direction to
account for different structure orientations. All the feature cubes fo
constitute the desired-structure feature set Fo, fo ∈Fo, in which our
algorithm searches for the nearest spatial structures.
(3) Calculate the similarity of exemplar-feature fe and desired-
feature fo (Lines 3-7). The exemplar features fe ∈Fe are compared
with every desired feature fo ∈Fo by calculating the sum of distances
of all voxel values in one feature cube via δ = ‖ fo− fe‖2. We then sort
fo ∈Fo in increasing order w.r.t. to their δ value. Finally, we chose
the k nearest structures xs and respectively construct nearest structure
set Xs for each bubble capture by fo.
(4) Identify bubble occurrence in nearest structures Xs (Lines 8-
10). After building the nearest similar structure set Xs, we then identify
whether a bubble actually occurs in each structure xs ∈Xs. If this is
the case, we add the respective bubble xb to Xb.

In our implementation, to reduce the significant cost of identifying
similar structures (in step (3) and (4)), we use an acceleration approach
to cut down the number of expensive direct voxel block comparisons
that we have to carry out. For this, we employ principle component
analysis (PCA) [13], a statistical dimension reduction method that op-
erates on the voxels in the exemplar and the desired-structure feature
cube. Here, the input is the vector of voxels in the exemplar or the
desired-structure feature cube. Specifically, we calculate the eigenval-
ues and only keep the set of largest eigenvalues that add up to around
95 percent of the total sum. For instance, for a 103 cube, we have a
1000-dimensional vector, which reduces down to 76 dimensions after
PCA reduction. A k-d tree is employed to store this reduced representa-
tion for quickly identifying similar structures. To build the feature set



Fo in our experiments, we considered rotations around all axes with a
90◦ angle, and use a distance between anchor voxels of eight voxels.

4.3 Similarity of Bubble Shapes
One important aspect that we aim to study in this work is to assess what
the different influence factors are that determine shape characteristics
of bubbles. For this, we assess the similarity of bubbles on the basis of
a combination of suitable feature descriptors which are computed on
the basis of the extracted bubble meshes. Geometric feature descrip-
tors quantitatively describe the 3D shape of bubbles in a way that is
invariant to scaling and rotation. We combine different descriptors to
improve their expressiveness, yet at the cost of increasing computation
time. In this work, we use the shape diameter function [32], Gaussian
curvature [15], and the volume surface ratio, which are among the most
effective and widely used 3D geometric shape descriptors.

The Shape Diameter Function D is a scalar function f : M→ℜ on
the surface, where M is a manifold mesh surface defining a volumetric
mesh. It expresses a measure of diameter distance at each vertex to
its neighborhood vertices on mesh surface, which is able to capture
the bubbles volumetric shape locally. The Gaussian Curvature G is the
product of principal curvatures, k1 and k2 at each point on a surface,
and with this quantifies the degree of unevenness of the bubble. The
Surface-to-volume Ratio R simply denotes the ratio between volume
and surface area of the bubble.

We quantify the difference between two bubbles on the basis of the
individual differences between descriptors. The surface-to-volume ratio
R is only a single descriptive number for the whole bubble, and we
use the squared difference between them to compute the distance ER .
In contrast, the shape diameter function D and the Gaussian curvature
G are computed per vertex of the respective mesh, and we compute
normalized histograms from these values. To compare these histograms,
we simply sum the squared differences of the individual bins to yield
ED and EG (we use 100 histogram bins in our implementation) . With
this, we then compute the distance E (V ) as a weighted average of ED ,
EG and ER :

E (V ) = wED +µEG +λER (1)

where w, µ , λ are the weights of shape diameter function, Gaussian
curvature and volume-surface ratio. In this work, we use w = 0.5,
µ = 0.3, and λ = 0.2, considering the importance of the respective
characteristics in our analysis. Note that while we use these metrics in
this paper for assessing similarities between bubbles only, they could
also be useful for more advanced resonance effect experiments as they
capture the bubble shaped in a meaningful way (akin to the simulation
using bubble characteristics discussed in Sect. 6(v)).

5 REGISTRATION FOR DIRECT VISUAL COMPARISON

To visually compare bubbles in a focus+context-style visualization, we
align them in a meaningful way by registering them via rigid trans-
formations. For this, we employ the Iterative Closest Point (ICP)
algorithm (e.g., [31]), a commonly used method for registration. The
ICP algorithm determines a rigid-body transformation, composed of a
rotation and a translation to minimize the sum of squared distances of
corresponding points. These transformations are iteratively improved
throughout the course of the algorithm. The quality of alignment that
can be achieved depends heavily on choosing good pairs of points, in
particular for the initial points that are used to determine the first, initial
transformation. A popular approach is to identify the initial points
using a covariance matrix (e.g., [9]). However, this cannot handle the
situation very well if one object extends far beyond the other one, due
to the reason that small misalignments will be significantly amplified.
Therefore, while we directly use the ICP implementation distributed
with MeshLab [6] in this work, we developed a customized technique
for determining suitable initial points for bubble registration.

The core idea is to select points based on the fitting planes of each
bubble, as they expressively not only capture shape but also CO2 bubble
morphology. For this, we take bubble characteristics into account to
achieve good results for our use case. In particular, from our findings
so far, we can see that we almost exclusively get bubbles with two
or three fitting planes, which is why we concentrate on these cases in

Algorithm 2 Selection of initial geometric points for bubble and corre-
spondence structure registration. For the sake of simplicity, we assume
in the description below that a bubble is convex (i.e., there is maximally
two intersections with a line), and that they are ordered such that P1, P2
are the ones with smallest enclosing angle in the case of three fitting
planes |P|= 3.

1: for i ∈ 1 . . . |P| do
2: Ai← project Connected-surface i onto Pi
3: ai← centroid of Ai
4: denote Li = ai +λni (ni is the normal of Pi)
5: vi← intersect Li with b (use result closest to ai)
6: Line segment l1, l2← shortest distance between L1 and L2
7: Midpoint lc← (l1 + l2)/2
8: Line M← intersect P1 and P2
9: Line segment m1m2← project v1 and v2 onto M

10: Midpoint mc← (m1 +m2)/2
11: v|P|+1← intersection of line seg. mc, lc with b
12: if |P| = 2 then
13: v4← intersect L1 with b (use result furthest from ai)
14: v5← intersect L2 with b (use result furthest from ai)
15: else if |P|= 3 then
16: v5← intersect b with lc +λn1 and lc +λn2 (use result closest

to lc)

the following. The initial geometric points selection for two and three
fitting planes, respectively, are illustrated using a 2D projected diagram
by example in Figure 5(a & b). Details are discussed in the following
by means of Algorithm 2.

Before we start, in the case of three fitting planes |P|= 3, we order
them in a way such that (P1, P2) is the pair of planes with smallest
enclosing angle. First of all, for each plane Pi ∈ P for a bubble b
(Line 1), we project the connected surface (from Sect. 4.1) onto Pi to
create a splat Ai (Line 2). We then compute the centroid ai of Ai, and
use it to define a line Li through this point in the direction of the normal
of Pi (Line 4). Then, we use Li to determine the respective vertex vi
on the bubble surface that is close to Pi. This then constitutes a set of
points that describes basic connectivity properties of the bubble.

On this basis, we then continue and compute two central positions as
the basis for further computations. First, we compute the line segment
that crosses the shortest distance between L1 and L2, and determine the
respective midpoint lc (Line 7). Second, we intersect the two fitting
planes P1 and P2 to determine respective line M, on which then the two
respective points determined so far (v1 and v2) are projected, yielding
m1 and m2. We then compute the midpoint mc between m1 and m2
(Line 10). With this, we compute the intersection point between lc and
mc (Line 11). This then provides the basis for specialization, whereas
we handle the cases of |P|= 2 and |P|= 3 in a different way to account
for the typical properties of the shapes that we could observe in our
analysis.

For |P|= 2 (from Line 12), we just compute the intersection of L1
and L2 with the bubble b again (similar to Line 5), but this time we
keep the intersection points far away from the fitting planes. In addition,
we identify an intersection point close to mc to specifically capture the
typical property of bubbles with two planes in that they are commonly
positioned in corners (Line 14). For |P| = 3 (from Line 15), we just
compute the final point going outward from lc with the normals of both
planes P1 and P2, and determine the intersection with the bubble b that
is closest to lc (Line 16).

In this work, we limit ourselves to cases with at most three fitting
planes as no bubbles beyond this were identified in our data set, but our
method could easily be extended to bubbles with more fitting planes
by using the projection of central points of each plane onto bubble
surface as initial points directly for ICP. Also, while we concentrated
our discussion on two and three fitting planes, we also developed a
variant for |P|= 1, which can be seen as a simpler variant of the |P|= 2
case (it is not discussed here, as it has not been used during our analysis).
To demonstrate the benefits of our selection approach, we compare our



Fig. 5: Examples for our geometry-based initial point selection for (a) three and (b) two fitting planes (discussed in Sect. 5).

results below against the popular approach for ICP point selection by
Gelfand et al. [9] (see Sect. 6 and Figure 8 for details).

6 VISUAL ANALYSIS OF BUBBLE FORMATION

The goal of this work is to gain more insight into CO2 sequestration
processes in a collaborative effort of visualization researchers and
domain experts studying these effects. The porous media dataset we
examine stems from X-ray CT scanning of a Fontainebleau sandstone
core of 5 mm under confinement pressure of 20 bar. The sample was
saturated with CO2 and was injected with an initial pore pressure of 15
bar. The pressure was decreased in 0.5 bar steps, and a tomographic
snapshot was taken at each point until the pore pressure was equal to
the rooms pressure. In this work, we only consider the last volume of
the series as we are primarily interested in the bubbles that persisted.
The XCT data was recorded at the Paul Scherrer Institute TOMCAT
beamline, and the final volume has a resolution of 0.65 µm per voxel
and a domain size of 2560 × 2560 × 2160 voxels. Each voxel contains
a 16 bit value which is equivalent to the local x-ray absorption value
of the sample. Our visual analysis has been carried out on a system
featuring an Intel(R) Core(TM) i7-6700 CPU with 3.40 GHz, 32 GB of
RAM, and an NVidia Geforce GTX1080 graphics card. Our proposed
nearest spatial structure searching (Algorithm 1) requires less than
one minute, and the registration method Algorithm 2 takes only a few
seconds to compute. In the following, we now employ the techniques
introduced above to visually analyze the data, present our findings,
and discuss what insights we have gained from this (focusing on our
research questions).

As a prerequisite for the evaluation below, we were able to correctly
identify and locate bubbles in primarily automatic fashion, with only
little user input required. Previously, this used to be a manual task that
is tedious and time-consuming, so we were able to get a full picture of
the present bubbles in the porous media for the first time and conduct a
full analysis on this basis. (i) We first employ our morphology-based
clustering and get an overview where bubbles form; (ii) we search the
nearest spatial pore structure and visualize the possibility locations of
potential bubble formation; (iii) we then identify similar bubble shapes
and analyze them regarding their commonalities and differences; (iv)
we apply our registration method for in-place, direct visual comparison
and compare its effectiveness to a standard approach; (v) we derive
the bubble size distribution and on this basis study resonance effects;
(vi) we summarize the significance of this work for CO2 sequestration
research and discuss some limitations and directions for future work.

(i) Morphology-based Bubble Clustering
We first classify bubbles into different classes with respect to their

morphology in terms of how they are connected to the surrounding
porous structure (cf. Sect. 4.1). With this, we can not only start the ad-
dress the questions where bubbles form (RQ1 (bubble locations)), but
also start to asses the conditions that must be present for a stable bubble
to form (RQ3 (structure influence on bubble)). The classification
results in three clusters as can be seen in Figure 6, which is rendered
using a visualization package Paraview [2]. C luster1, C luster2 and
C luster3 connect to one, two and three structure surfaces, respectively.

In our applications, water is the wetting fluid. The first observation
from the overall bubble shape is that CO2 is acting as a wetting phase.
Bubbles in C luster1 are difficult to create as a wetting fluid, since they

usually tend to be a very thin layer over the solid surface. Therefore,
the existence of these bubbles indicates that solid surface roughness
does play a role in not only the formation of gas bubbles, but also in
their final shape and position. Bubbles of C luster2 tend to be found
in corners of the pores , while bubbles in C luster3 commonly form
bridges. The number of bubbles in C luster1, C luster2 and C luster3
accounts for 1.03%, 41.38% and 48.29% of all bubbles respectively.
From the percentage of each cluster, we statistically find the more solid
surfaces a bubble connects to, the more stable it will be. This gives a
guidance of what kind of porous structures to look out for in the context
of CO2 bubble storage. Interestingly, we found that there are stable
bubbles not attached to porous structure, and that also no cases with a
larger number of connection points occurred (one reason for this could
be the relatively small size of bubbles occurring in our experimental
setup). Interestingly, the findings also show that there are numerous
bubbles with a comparably complex, non-spherical geometry. The
form and location of bubble formation strongly depend on the specific
surface properties of the porous medium. We expect, that this will
be changed completely if e.g. different types of reservoir sandstones
are compared. To conclude, these results underline the need of Direct
Numerical Simulations for bubble resonance effects.

Furthermore, we gained insights regarding the boundary conditions,
i.e. how and where the bubbles are attached to the solid surfaces for
the formulation of these Boundary Value Problems (BVPs). Pinned or
attached bubbles, i.e. bubbles with kinematical boundary conditions,
have different resonance frequencies (eigenmodes) compared to free
non-attached bubbles. These insights could help to numerically simu-
late the dynamic response of bubbles. Free non-attached bubbles can
be already physically analyzed and resonance properties have been
calculated for the segmented size distribution, cf. Fig. 11. It could be
clearly observed, that there is a frequency band around the characteris-
tic (resonance) frequency ω̄ where abnormal velocity dispersion (and
attenuation) occurs.

(ii) Comparing Bubble Formations in Similar Pore Structures
We now employ our approach to find similar spatial structures

(Sect. 4.2, Algorithm1) in order to identify potential locations where a
specific type of bubbles occurs (addressing another aspect of RQ1 (bub-
ble locations)). For this, we determine the 20 most similar structure
shapes for each corresponding structure and visualize all the structures
color-coded with respect to similarity (Figure 7). With this, we were
able to automatically analyze and predict where potential positions
of (gas) bubbles are in the pore space, which allows for a potential
estimate about the numbers (and locations) of bubbles in a unit cell.

This also helps to anticipate the respective acoustic properties of
bubbles. The Elasto-dynamical unit cell investigations of porous mate-
rials saturated with a pore fluid and bubbles allow for the calculation
of acoustic properties and therefore the dispersive characteristics (e.g.
phase velocities and attenuation). When possible locations of bubbles
are known, generic worst case scenarios with the maximum numbers
of bubbles can be performed (highest amount of attenuation). The
similarity visualization results construct a pore structure categories,
which greatly enrich the ensemble for acoustic property experiments.

(iii) Geometry-based Bubble Similarity Metric
For further analyzing the influence of correspondence structure on



Fig. 6: Morphology-based classification of bubbles. C luster1, C luster2, and C luster3 include the bubbles that are connected to the porous
medium with one, two, and three sides, respectively. Here,we can observe that CO2 is acting as a wetting phase. C luster1 bubbles are difficult to
create as a wetting fluid, since they usually tend to be a very thin layer over the solid surface. Therefore, the existence of these bubbles indicates
that solid surface roughness does play a role in not only the formation of gas bubbles, but also in their final shape and position. Bubbles of
C luster2 tend to be found in corners of the pores, and C luster3 bubbles are commonly found as bridges.

Fig. 7: For different porous structures in which bubbles occur, similar structures in the data set are highlighted to indicate potential locations for
certain types of bubbles. In (a) and (b), the 20 most similar porous structures for one specific bubble (bottom right) are presented for bubbles
in C luster2 and C luster3, respectively. (c) shows the most similar structures (top three) and the least similar structures (bottom three) for a
bubble. The color map from purple to pink denotes decreasing similarity. This addresses RQ1 (bubble locations) and RQ4 (bubble from
structure), showing the potential of a pore space to sequester additional CO2. These results also help to steer the injection fluid parameters in
future experiments, and support our ongoing efforts to develop a method to predict wave attenuation from XCT dry scans.

a bubbles shape (toward RQ3 (structure influence on bubble)), our
approach supports to observe the variation of correspondence structures
that belong to similar bubbles (cf. Sect. 4.3). As a first step toward
this, we applied the geometry-based bubble similarity metric to all
C lusters. A full similarity-sorted list of bubbles in C luster3 can be
found in Figure 8(a). The nearest neighbors of bubbles in each row were
arranged in the order of increasing geometric error (via our geometry-
based bubble similarity metric, Equation 1). For instance, Bubble1
(Row No.1) and Bubble9 (Row No.9) are nearest neighbors to each
other. However, naturally the nearest neighbor does not have to be
mutual. In particular, this is the case when shapes are relatively different
with respect to all shapes. For instance, the nearest neighbor of Bubble3
is Bubble2, while the nearest neighbor of Bubble2 is Bubble7. The
distance according to our metric between Bubble3 to Bubble2 is larger
than the distance between Bubble7 to Bubble2, which means Bubble7
is more similar to Bubble2 than Bubble3.

In practice, this allows us not only to look at the closest bubbles as
determined by our approach from Figure 8(a) (similar or non-similar
ones, depending on the analysis task), but also enables searching a
cluster of similar shapes, which avoids large amounts of tedious and
repetitive work and reduces human-introduced error. It further helps us
with the analysis of bubbles with complex boundary conditions, as the
number of simulations for bubbles in one cluster could be reduced to a
”master bubble”. Especially from Figure 8, we could check not only
the geometrical differences of the most similar bubbles (e.g. the master
bubble) but we can also analyze the difference in boundary conditions.

This constitutes an important contribution to the analysis of bubble with
complex boundary conditions.

(iv) Registration for In-place, Direct Visual Comparison

On the basis of the collection of similar bubbles, we now study how
bubble morphology shape variation dependends on differences of sur-
rounding structures (RQ3 (structure influence on bubble)). For this,
we employ our structure registration approach to enable a meaningful
direct visual comparison (cf. Sect. 5). With this, we can choose a near-
est neighbor bubble pair in Figure 8(a) and directly see the registration
results from different views (Figure 8(b)). The comparison of two
registration results of the nearest neighbor pair (Figure 8(a)) are shown
in Figure 8(c). The black rectangles in the first row of Figure 8(c) show
the mismatch and inappropriate registration of the standard method,
making a meaningful direct comparison difficult. We also quantitatively
validate the two registration methods on the basis of bubble centroids.
The mean error difference of our method is 3.5 mm, while the standard
method yields 7.9 mm, which is significantly larger. Moreover, results
for multiple registered bubbles and structures from one central perspec-
tive are shown in Figure 9. Via the bounding boxes of the bubbles we
quantitatively assess the bubble shape variation and the correspondence
structure angle rotation. For example, Bubble1 is larger by 18.97 %
in the principle z-direction and smaller by 1.32 % and 2.62 % in the
x-direction and y-direction in comparison to Bubble9. The three fitting
planes of Bubble1 deviate by 32.4°, 6.5° and 2.9°, respectively, with
respect to Bubble9.



Fig. 8: Comparing bubbles to gain insights regarding underlying properties. (a) For each bubble, we automatically determine the most similar
bubbles of the same morphology class. (b) We render and compare the registered results of the most similar bubble pair (e.g. 1 and 9) from
different views. (c) Registration results for selected bubble pairs (gray boxes in (a)) using a standard method (dotted black box, top) and our
approach (dotted red box, bottom). Dotted boxes indicate inadequate parts of the registration with the standard method. The similarity in the pore
space geometry surrounding similar bubbles reinforces the idea of identifying a prototypical bubble per cluster (RQ3). The difference found
between the bubbles can then be attributed to a scaling difference (RQ2).

In particular, this direct comparison of bubble and structure shape
variation allows us to create a link between bubble and pore space
by quantitatively assessing the shape variation of the bubble and the
angle rotation of correspondence structure in pore space. From the
pore morphology we would then extract bubble positions, sizes and
boundary conditions. On the basis of that knowledge, we could perform
in the future image-based numerical finite element calculations for the
determination of bubble resonance frequencies.

(v) Bubble Size Distribution and Resonance Frequency

We could observe the bubble size distribution (e.g. in a unit cell) with
quantitative values through different colors, which is directly linked
to the resonance frequency of a single bubble (RQ2 (bubble size dis-
tribution)). We also learned that measuring and visualizing curvature
is not trivial, because of the lack of a smooth curvature solution. But,
what we also could learn is that mean curvature could be potentially
determined well which supports the basic idea of our coarse-grained
acoustic model based on simple geometries (e.g., spheres). Since we’ve
known the bubble size distribution we could directly calculate the
distribution of resonance frequencies. As all resonance frequencies
directly contribute to the dispersive response of the medium such an
information is very important. Assuming simplest geometries of the
bubbles (spheres), these resonance or eigen-frequencies could even

been calculated analytically based on the dispersion relations derived
for the model proposed in [7, 25].

We plot the phase velocity for the longitudinal wave (P-wave /
compressional wave) as a function of frequency for a mixture of water
with discrete gas bubbles (Figure 11). The dispersion relation has been
derived in [7] where more explanations can be found. We have chosen
a bubble size distribution in order to evaluate the dispersion relation
according to the size distribution obtained from the XCT scans (blue
solid curve). This phase velocity dispersion is compared to results based
on a single bubble with the mean diameter. The influence of the bubble
diameter and diameter distribution can be clearly observed. Note the
distinct shift in frequency domain to lower frequencies. Further, in a
certain frequency band, (from around 0.5-5 ω/ω̄), a strong deviation
from the lower and higher frequency limits are visible. Table 1 shows
the average value of each C luster on volume, surface area and radius
of bubbles. The mean curvatures of bubbles are shown in Figure 10.
The great variation of curvature in its value due to the nature of the
non-smoothness of discrete surfaces.

(vi) Significance for CO2 Sequestration Research

The obtained visualization results allow for the first time to have a
deeper insight in the formation of gas bubbles in porous media. The
information is not only restricted to the morphology of the bubbles, but



Cluster Volume (voxel) Free-surface area Whole-Surface area Free-surface / Volume Whole-surface/ Volume Free-surface Radius Whole-surface Radius
1 31650 3805 7548 0.1202 0.2385 48.3816 27.5144
2 155415 8634 19475 0.0556 0.1253 37.6325 37.5162
3 276123 11999 26615 0.0434 0.0964 41.6289 43.1703

Total 192384 9491 21627 0.0493 0.1124 39.9731 39.1535

Table 1: Volume, fitting surface area and radius of bubbles in C luster1, C luster2 and C luster3 (average values).

Fig. 9: Rendering of multiple registered bubbles (left) and respective
structures (right) for members of C luster3 (color denotes Bubble1 to
Bubble10 from C luster3). In the centers, all bubbles and corresponding
structures are shown, while around them further bubbles and structures
are incrementally added. This comparison reinforces the idea of a
similar set of boundary conditions of the bubbles in C luster3 (RQ3
(structure influence on bubble)), since they are attached to surface
planes with similar normal directions.

Fig. 10: Bubble curvature (from red =̂ large to blue =̂ small) for
C luster2 (top) and C luster3 (bottom).

also includes information about the contact of the bubble to the pore
surfaces. With this, detailed knowledge about boundary conditions can
be obtained. It has been observed that the geometry of the bubbles
is complex and therefore effective acoustical properties have to be
calculated numerically. Theories for such investigations have been
proposed [17, 18] and numerical investigations can, on the basis of our
visualized results, be performed including the proper formulation of
boundary conditions. Furthermore, as not only bubbles morphologies
but also the the related pore structures have been characterized, we
know now, where and how bubbles will be formed in the pore space.
This knowledge from the visualization techniques helps us to pursue
one goal of our research, namely the generation of generic data based
on dry XCT scans which are much simpler to obtain.

7 CONCLUSION

In this paper, we presented a visualization approach for the back-
analysis of CO2 bubble-induced attenuation in porous rock formations.
The fundamental understanding of attenuation phenomena in CO2-
water-saturated porous rock formations is of high interest during CO2
sequestration processes. It consists of numerous components that were
specifically designed for this analysis task. As a basis, we introduced
customized techniques to extract CO2 bubbles and their surrounding
porous structure from XCT measurements. We then automatically clas-
sified them and put them into relation, both considering morphology
and geometric features, with the goal to understand how the structure
of porous medium influences the occurrence and the shape of formed
bubbles. Our approach further directly supports searching for similar
porous structures, which, among others, we used in order to determine
certain types of structures with a high probability of containing bubbles
of a certain type. We further proposed a customized registration tech-
nique considering the bubble shape as well as its points of contact to the

Fig. 11: (a,b) Extracted geometric measures of the bubbles encountered
in our experiment. (c) These are used in a simulation of a frequency-
dependent velocity of a water-gas bubble-mixture as a function of
normalized angular frequency (ω̂ denotes the resonance frequency).
The blue curve depicts the results with our extracted values (the distri-
butions from (a,b)), while the dashed curve just uses respective mean
values instead. A strong frequency shift can be seen in the logarithmic
scale, underlining the importance of using measured values from actual
bubbles and not just approximations.

porous media surface that allowed us to directly compare bubbles and
their structures visually. With our quantitative extraction of geometric
bubble features, we further supported the analysis, and laid the founda-
tion for creating a physical model to explain characteristics of interest
in future work. Most importantly, we demonstrated that our approach
was successfully used to answer several research questions in the do-
main, toward them main goal to identify critical seismic characteristics
of fluid-saturated rock that govern its capability to store CO2.

Apart from the different directions we want to explore in CO2 se-
questration research, there are also several aspects linked to this that
we aim to improve with respect to our techniques. In this regard, most
importantly, the quality of the segmentation has an impact on all sub-
sequent steps in our pipeline and naturally our analysis. This is why
we aim to explore further directions on how to improve the results, and
eventually even yielding a method that can manage to do this reliably
without expert user interaction. This would especially be an impor-
tant basis for processing time-dependent experiment data as well as
ensembles, which we plan to do in future work. While we employ a
couple of acceleration techniques in the identification of similar porous
structures, we require certain sampling gaps to finish in an adequate
amount of time, and we will work on improvements of our techniques
to achieving this quickly in a dense fashion (i.e., a distance between
anchors of one voxel and small variations in rotation angles) . Finally,
with the plan to do a larger variety of experiments, we will need most
probably encounter cases with more than three fitting planes for a bub-
ble, and we plan to generalize our approach in this regard accordingly
(most prominently, this concerns our approach for the registration of
bubbles).
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J. Kastner, and C. Heinzl. Fiberscout: An interactive tool for exploring
and analyzing fiber reinforced polymers. In Visualization Symposium
(PacificVis), 2014 IEEE Pacific, pp. 153–160. IEEE, 2014.

[41] M. L. Wu and V. Popescu. Multiperspective focus and context visualization.
IEEE T. Vis. Comput. Gr., 22(5):1555–1567, 2016. doi: 10.1109/TVCG.
2015.2443804

[42] Z. Xue and T. Ohsumi. Seismic wave monitoring of CO2 migration in
water-saturated porous sandstone. Exploration Geophysics, 35(1):25–32,
2004.

[43] Y. Zhang, M. Brady, and S. Smith. Segmentation of brain mr im-
ages through a hidden markov random field model and the expectation-
maximization algorithm. IEEE transactions on medical imaging, 20(1):45–
57, 2001.

http://dx.doi.org/10.1109/VISUAL.2005.1532788
http://dx.doi.org/10.1109/VISUAL.2004.48 doi:10.1109/VISUAL.2004.48

	Introduction
	Related Work
	Segmentation of Bubbles and Porous Structures
	Morphology and Similarity
	Morphology-based Bubble Classification
	Similarity of Porous Structures
	Similarity of Bubble Shapes

	Registration for Direct Visual Comparison
	Visual Analysis of Bubble Formation
	Conclusion

