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Abstract. GPU clusters nowadays combine enormous computational
resources of GPUs and multi-core CPUs. This paper describes a dis-
tributed program architecture that leverages all resources of such a clus-
ter to incrementally reconstruct, segment and render 3D cone beam com-
puter tomography (CT) data with the objective to provide the user with
results as quickly as possible at an early stage of the overall computation.
As the reconstruction of high-resolution data sets requires a significant
amount of time, our system first creates a low-resolution preview volume
on the head node of the cluster, which is then incrementally supple-
mented by high-resolution blocks from the other cluster nodes using our
multi-resolution renderer. It is further used for graphically choosing re-
construction priority and render modes of sub-volume blocks. The cluster
nodes use their GPUs to reconstruct and render sub-volume blocks, while
their multi-core CPUs are used to segment already available blocks.

1 Introduction

CT scanners using modern flat-panel X-ray detectors are popular in industrial
applications. They are capable of acquiring a set of high-resolution 2D X-ray
images from a huge number of different angles at rapid pace. However, the re-
construction of a volumetric data set on a Cartesian grid from these images is
very time consuming as the commonly used reconstruction method by Feldkamp
et al. [1] has a runtime complexity of O(N4). Subsequently, oftentimes a com-
putationally expensive segmentation algorithm is run to support analysis which
in total results in a long delay until the examination can be started.

In this work, we focus on industrial applications, where engineers require a
high-resolution reconstruction and segmentation, while it is often critical to have
the results of e. g. a non-destructive quality test at hand as early as possible. We
therefore propose to distribute the reconstruction and segmentation processes on
a cluster equipped with CUDA-enabled GPUs and multi-core CPUs. Employing
our hybrid mult-resolution renderer, finished full-resolution parts are successively
displayed in the context of a low-resolution volume. The low-resolution data set
can be created quickly by a single GPU within several seconds on the front-end
node. It is also used for prioritizing blocks for reconstruction and render-mode
selection.The full-resolution volume is progressively created by back-end nodes,
which also segment and render their respective blocks.



2 Steffen Frey, Christoph Müller, Magnus Strengert and Thomas Ertl

2 Related Work

In this work, we use the reconstruction algorithm for 3D cone beam computer
tomography that was developed by Feldkamp et al. [1]. Turbell [2] gives exten-
sive and detailed overview over varitions of this method, as well as fundamen-
tally different approaches for CT reconstruction. The use of graphics hardware
for computer tomography was first investigated by Cabral et al. [3] on non-
programmable, fixed function SGI workstations. Xu et al. [4] introduced a frame-
work that implements the Feldkamp algorithm using programmable shaders.
Scherl et al. [5] presented a comparison between their Cell and a CUDA imple-
mentation.

Distributed volume rendering has been investigated for a long period of time
and a magnitude of publications can be found on this issue. Most of the existing
systems fit either into the sort-first or sort-last category according to Molnar
et al.’s classification [6]. Recent systems use GPU-based raycasting [7] with a
single rendering pass [8] since GPUs support dynamic flow control in fragment
programs. Dynamic load balancing issues in such systems have been addressed
by Wang et al. [9] using a hierarchical space-filling curve as well as by Marchesin
et al. [10] and Müller et al. [11], who both use a kd-tree in order to dynamically
reorganise the data distribution in a cluster.

Multiresolution rendering is a LOD approach enabling the visualisation of
large data on a GPU interactively. Different data representations are used adap-
tively depending on various parameters (e. g. the view point or estimated screen-
space error) resulting in a quality/performance trade-off. Most frequently, trees
are used as underlying data structure in combination with raycasting [12]. Ljung
et al. [13] address the interpolation between different blocks with different LOD
in detail. Guthe et al. [14] employ texture-based volume rendering using a com-
pressed hierarchical wavelet representation which is decompressed on-the-fly dur-
ing rendering.

The analysis of industrial workpieces using the segmentation of CT data was
discussed by Heinzl [15], and the integration of segmentation information in a
raycaster was discussed by Bullitt and Aylward [16] in a medical context.

3 Architecture Overview

Our reconstruction and visualisation system consists of two classes of nodes:
a single front-end node and one or more back-end nodes. The front-end node
exposes the user interface and displays the volume rendering of the data set
that is being reconstructed. Furthermore, it allows the user to influence the
order of reconstruction and the rendering mode of high-resolution sub-volume
blocks on the back-end nodes. The back-end nodes in turn perform the actual
reconstruction and segmentation of the high-resolution sub-volume blocks and
additionally render images of these blocks, which are used by the front-end node
to generate the final rendering.

Figure 1 illustrates how the distributed program is controlled by the user.
The first step is to provide the input, most importantly the X-ray images. Our
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Fig. 1. Control (dashed) and data flow between the threads and processes of the system
and the user. The back-end process may run simultaneously on multiple nodes.

approach is not limited to reading the projection images from disk, but could
also handle images being streamed directly from the scanner while performing
the incremental reconstruction. However, the time for image acquisition is in the
order of minutes while high-resolution reconstruction can take hours hours in our
field of application. Besides, industrial CT scanners often perform modifications
(e. g. center displacement correction) after the actual acquisition.

While distributing the parameter set is completed quickly using a single
synchronous broadcast operation, scattering the projection images can take a
long time due to disk I/O and network bandwidth limitations. We address this
problem firstly by distributing the images asynchronously while the front-end
node completes a low-resolution preview reconstruction, and secondly by daisy-
chaining the back-end nodes for the distribution process. This approach avoids
unnecessary disk load on the front-end and the back-end nodes, which is the
bottleneck in case of a high-speed interconnect like InfiniBand. Additionally,
projection images are kept in main memory on the back-end nodes as long as
possible to avoid I/O slowing down the reconstruction process. They are only
swapped to disk if the system comes under memory pressure.

As the reconstruction of the coarse preview volume usually completes by
far earlier than the distribution of the projection images, the user can start
investigating the data set at an early state of the overall procedure. The preview
rendering can be superimposed by a grid showing the sub-volume blocks that are
reconstructed on the back-end nodes, which allows the user to specify the order
of reconstruction that is then communicated from the front-end node to the
back-end nodes. The visualisation of the reconstructed data set is compiled and
presented on the front-end node. At the beginning, the low-resolution preview
reconstruction volume data is exclusively used for local rendering. As a detailed
sub-volume block has been reconstructed on a back-end node, it is rendered
on the same node and included in the final rendering on the front-end node
as a kind of pre-integrated sub-volume block using our hybrid raycasting and
compositing approach. Additionally, the sub-volume is queued for segmentation
on the multicore CPU of the respective node.
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4 Implementation Details

Our system consists of three basic modules. The CT reconstruction module (Sec-
tion 4.1) uses a CUDA implementation of the Feldkamp algorithm.The segmen-
tation module (Section 4.2) is a fully automatic 3D flood-fill variant designed
for distributed operation. The volume rendering module (Section 4.3) is used for
image generation on the front-end and back-end nodes. Additionally, there is a
sub-volume selection and picking rendering mode. It displays the coarse volume
and allows the precise selection of sub-volume blocks by mouse click for moving
these in the reconstruction priority queue or for choosing the visualisation mode.

4.1 Reconstruction of Sub-volume Blocks

The Feldkamp cone beam reconstruction algorithm works for industrial CT scan-
ners which move the source in a circular trajectory shooting rays diverging as a
cone through the object of interest on a detector. The algorithm can be subdi-
vided into two phases: the preparation of the projection images and their subse-
quent depth-weighted backprojection into the volume. The preparation consists
of weighting and filtering each image with a filter kernel derived from a ramp
filter. The computationally most expensive part of the reconstruction is the
backprojection, on which we will concentrate in the following. It is commonly
implemented by determining for each volume element which projection image
value it corresponds to by projecting it along the X-ray from the source to the
detector. The depth-weighted sum of the respective pixels from all projection
images yields the reconstructed voxel value.

In order to completely reconstruct a group of voxels in parallel by backpro-
jection in a single CUDA kernel pass, all required projection image data must
reside in graphics memory. This can be accomplished – even for large data sets as
we focus on – by only considering one sub-volume block for reconstruction at a
time such that just subsets of the projection images are needed. The dimensions
of the sub-volumes are determined in a preprocessing step to cover the volume
with a minimal amount of blocks considering the graphics memory available.

All projection images are cropped and stored in a single container texture,
similar to the storage of renderings for the front-end raycaster (Section 4.3). The
coordinates to access this texture for each voxel and every projection image are
computed by projecting the eight corners of each sub-volume along the X-rays to
the detector plane. These coordinates are subsequently linearly interpolated on
the CPU to get the coordinate values pxyw for a considered slice. Afterwards, the
window position wxy of the sub-image with respect to the whole image and its
coordinates ixy in the container texture need to be applied to the projection co-
ordinates pxy. Further, pxy needs to be weighted with the projective component
pw to yield qxyw that is uploaded to a texture: qxy = pxy +pw(i−w); qw = pw.
Weighting with pw is required to counter the effect of the projective division
c = ( px

pw
,

py

pw
)T that takes place after the bilinear interpolation on the GPU.

This finally yields the coordinates c for accessing the value of one projection
image in the container texture that is backprojected on the considered voxel.
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4.2 Volume Segmentation

For segmentation, we use a fully automatic 3D flood fill variant that leverages a
multi-core CPU. While the GPUs are reconstructing sub-volume blocks, multiple
CPU threads grow regions around a user-defined number of randomly distributed
seed points in the already completed blocks. The decision on whether to add a
voxel to a region is based on a user-defined threshold (e. g. the maximum range
of values allowed in a region) and a gradient-based criterion.

Volume segmentation also requires some communication – between different
threads and nodes – due to the fact that the algorithm must merge segments
that have been created on different CPU cores or cluster machines. For merging
two sub-volumes’ regions that belong to different cluster nodes, the region IDs
at the face they meet always has to be transmitted. Additional data needs to be
transferred depending on the region criteria chosen, e. g., for a gradient-based
method using central differences, it suffices to transmit a sub-volume face while
value-based methods require extra region information to combine the regions.

4.3 Hybrid Multiresolution Volume Rendering Incorporating
Sub-volume Blocks

Each back-end node renders images for the front-end node of the high-resolution
sub-volume blocks it has reconstructed and segmented. The renderer only ray-
casts the pixels that lie within the image-space footprint of the current sub-
volume with respect to the camera parameters transmitted by the head node.
As the reconstruction of a subvolume can be interrupted by rendering requests,
the renderer must be able to handle sub-volumes for which high-resolution im-
ages are only available up to a certain part. The renderer therefore substitutes
the missing high-resolution slices with coarse volume data that has been recon-
structed by the front-end node during the initialisation phase. In order to avoid
dynamic branching on the GPU and to achieve more efficient texture fetching,
the coarse volume data of resolution l is appended to the texture of high resolu-
tion h. Thus, the sampling coordinates s on the ray must be scaled to yield the
texture coordinates c for the coarse volume past the boundary b in z-direction to
low-resolution data: c = (sx ·τx, sy ·τ y, (sz−b) ·τ z +b)T with τ = ( lx

hx
,

ly

hy
, lz

hz
)T

for sz > b and τ = (1, 1, 1)T otherwise (note that b = hz for complete block).
The renderer on the front-end node combines high-resolution imagery from

the back-end nodes with the coarse volume data that are available on this node
into a volume rendering by integrating compositing in the raycasting loop of the
front-end node. High-resolution images are raycasted by the front-end node as a
kind of pre-integrated voxels. All pre-rendered images are stored in one colour
texture on the graphics card, similar to the container texture of the reconstruc-
tion algorithm. Images are placed next to each other until the end of the texture
is reached and then a new row of images is started at the base level of the tallest
image of the previous row (Figure 2).

The information on whether a high-resolution rendering for a sub-volume
exists, respectively the coordinates to access it are uploaded to the graphics



6 Steffen Frey, Christoph Müller, Magnus Strengert and Thomas Ertl

Fig. 2. Left: When rendering the final image, it is determined for each sampling point
whether there is pre-rendered high-resolution data available (sampling point 1) or not
(sampling point 2). As the case may be, different coordinates are used to access the
colour map. Right: Renderings of the IC datset resulting from this technique.

card’s shared memory for efficient access. Two 16 bit integers per sub-volume
are utilised to determine the texture coordinates of a pre-rendered pixel for the
sample point of a ray. These coordinates have already been pre-modified such
that the pixel position of a ray only has to be added to fetch a pre-rendered pixel.
Due to the use of shared memory and the overloading of the colour map access,
no actual branching is required and the amount of texture memory accesses in
the sampling loop is the same as of a standard single pass raycaster: one volume
texture fetch requesting a scalar density value and one colour transfer texture
lookup retrieving a 4D vector. Yet here the colour texture lookup is also used
for accessing a rendered high-resolution image, depending on the sub-volume the
respective sample is in.

4.4 Communication and Data Exchange

The communication patterns of our application differ in two different phases:
At the beginning, the input parameters and projection images are distributed
synchronously, the latter in a daisy-chain from one back-end node to the other.
This alleviates the disk I/O load on the front-end node, which initially stores
the input data, and introduces only a small latency in the distribution pipeline.

After initialisation, both node classes enter a message loop for asynchronous
communication. For the front-end node, this is equivalent to the message loop of
the window system, which starts as soon as the preview volume has been recon-
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Fig. 3. Left: Timing results for several cluster configurations. The bar chart shows
initialisation and reconstruction times on the front-end and back-end nodes (units on
the left), while the lines show the average time from a remote rendering request until the
reception of the first/last sub-volume image on the front-end node (units on the right).
Right: Mutual influence of reconstruction, segmentation and user interaction during
the segmentation.The results for only one back-end node are clamped for clarity.

structed. The back-end nodes have a second message loop for the communication
of the segmentation subsystem in order to decouple this process completely from
the reconstruction and rendering tasks. The message handling of communication
with the front-end can interrupt the reconstruction process, which is running
whenever no more important requests must be served, e. g. for requesting high-
resoluting renderings. It may therefore take a significant amount of time from
issuing a rendering request until all sub-images are available. Hence, images are
received asynchronously and replace parts of the local preview rendering as they
come in.

The assignment of reconstruction tasks to back-end nodes is carried out by
the front-end node as it must be possible to re-prioritise blocks on user request.
Load-balancing is implicitly achieved by the back-end nodes polling for new tasks
once they have completed a sub-volume block.

5 Results

We tested our system on an eight node GPU cluster with an InfiniBand intercon-
nect. Each node was equipped with an Intel Core2 Quad CPU, 4GB of RAM, an
NVIDIA GeForce 8800GTX and a commodity SATA hard-disk. One node acted
as front-end creating a 2563 voxel preview volume, while the remaining ones
reconstructed a 10243 volume from 720 32-bit X-ray images with a resolution
of 10242 pixels (Figure 4 shows the volumes). The calculated sub-volume size
was 3523 resulting in a total of 27 sub-volumes. The time from program start
until the preview volume is reconstructed on the frontend-node and rendered is
around 29 s, of which the most part is required for the I/O caused by projec-
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tion image downsampling that runs in parallel with the data distribution, while
the actual reconstruction on the GPU takes only 1.3 s. The determination of
the sub-volume dimension that takes a few seconds only runs concurrently. Fig-
ure 3 (left) shows the data distribution and reconstruction times measured on the
front-end and the back-end nodes. Note that in contrast to the separate transfer,
the batch transfer may interrupt the reconstruction of a sub-volume. The times
for the front-end node also include communication overhead and show the span
between program start and the availability of the complete high-resolution vol-
ume. In contrast, the numbers for the back-end nodes comprise only the longest
computation. So although the average reconstruction time on the back-end nodes
quickly decreases with an increasing number of nodes, the observed time on the
front-end node declines more slowly, because this timing includes the input dis-
tribution and other communication. Input distribution takes slightly longer the
more nodes are involved, because the measurement on the front-end node in-
cludes the time from reading the file from disk until the last node received the
data. Thus the last node in the daisy chain must wait longer for its data.

The rendering times depicted in Figure 3 (left) indicate the time span be-
tween the moment the front-end node requests new sub-volume images and the
moment the first respectively the last remotely generated image is used in the
visualisation. Images from the back-end nodes can either be sent in batches
or as separate messages. In our measurements, we let the batch requests – in
contrast to the separate requests – interrupt the reconstruction not only after
a sub-volume block but already after a sub-volume slice has been completed.
For the reconstruction, this means that after rendering projection images have
to be re-uploaded to the graphics card, resulting in a slightly worse rendering
performance than when interrupts are prohibited. For the separate transfer of
sub-images there is only little latency between the request and display of an im-
age on the front-end node which gives the impression of a more fluid interaction,
while in our test setup the time until the last image is received on the head node
is much longer. This is partly due to the decrease in network throughput and
the potential interruption of the image transfer by higher priority messages. But
more significantly, a node potentially has to wait the reconstruction time of up to
14 s for a sub-volume block to be completed by the reconstruction until rendering
can be started. This happens more often the more nodes are involved and hin-
ders scaling with the cluster size of the average latency until the last image has
been received. Please note, however, that the system always remains responsive
as it can use the coarse volume data that is available from the beginning.

Figure 3 (right) points out the mutual influence of the reconstruction, the
segmentation and user interaction during the reconstruction phase. Frequently
interrupting the reconstruction by manipulating the scene increases overall re-
construction time and subsequently also segmentation time. The latter is caused
by the fact that all sub-volumes have to be read for rendering from disk resulting
in reduced I/O performance of the segmentation threads. The same holds true
for reconstruction performance, but in this case both computations additionally
conflict in the usage of the GPU.
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Fig. 4. From left to right: The coarse 2563 volume, a partially reconstructed volume,
the fully reconstructed high-resolution 10243 volume and an intermediate state when
the left part of the volume has already been segmented.

When reconstructing a 20483 volume from 1440 × 20482 projection images
on eight nodes, data distribution takes ∼ 13.5min. It is limited by disk I/O
as nodes need to read and write data simultaneously. The reconstruction needs
∼103min, which is about 84 times longer than reconstructing the 10243 volume.
The scaling behaviour is severly hindered by I/O performance in this case due to
the excessive need for data swapping, which affects primarily the storage/access
of the input data (23GB versus 4GB of RAM). Sub-volume sizes are further
limited to 2563 due to GPU memory restrictions, which requires a total of 512
sub-volumes to cover the complete volume – resulting in 19 times more accesses
to projection images and sub-volumes. This significantly adds to the permanent
memory pressure as the ratio of projection images and sub-volumes that can be
stored in memory is already eight times worse in comparison to the 10243 case.

6 Conclusion and Future Work

We introduced a distributed software architecture for the 3D reconstruction of
computer tomography data sets while continuously visualising and segmenting.
Exploiting the computational power of GPUs, our system provides a fast prelim-
inary reconstruction and visualisation, which allows for prioritising interesting
sub-volume blocks. While the reconstruction is in progress, the visualisation is
continuously kept up-to-date by integrating all available high-resolution blocks
immediately into the rendering. For that, we use a hybrid CUDA-based volume
raycaster that can replace low resolution blocks with pre-rendered images. We
also leverage multi-core CPUs for parallel volume segmentation, which is often
utilized for advanced processing steps as well as the support of visual analysis.
As this is executed in parallel with the reconstruction on the GPU, the user
can switch the render mode to segmentation on a per block base display shortly
after the sub-volume has been reconstructed. In our tests, we could see a 2563

preview of a 10243 data set after 30 seconds and the full resolution volume after
less than three minutes. A large 20483 volume could be reconstructed in 103
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minutes, but the process was hampered by the limited I/O performance and
GPU and main memory. Testing our system with a bigger cluster and a faster
distributed filesystem therefore remains for future work. Our architecture could
be further extended by (semi-) automatically assisting the user during the sub-
volume selection by pointing out regions that could be of high interest, e. g. by
identifying areas with large gradients in the coarse volume.
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