
U
n

iv
e
rs

it
ä
t

S
tu

tt
g

a
rt

VISUS (Visualization Research Center)
T. Ertl C. DachsbacherD. Weiskopf

CUDA-Accelerated Continuous 2D Scatterplots

Sven Bachthaler, Steffen Frey, and Daniel Weiskopf

Goals
Push performance of continuous scatterplots towards interactivity.

Move workload from CPU to GPU.

Improve scalability with regard to increased data set size.

Increase usability by reducing response time.

Motivation
Discretized data in scientific visualization is commonly defined

continuously, e.g. by applying interpolation or reconstruction

techniques to the data samples.

Continuous scatterplots make use of continuously defined data by

drawing the scatterplot in a dense way — instead of drawing discrete

glyphs as it is the case with conventional scatterplots, they represent

the continuous distribution function in the scatterplot domain.

The original approach [BW08] implemented on the CPU is slow,

which makes it difficult to work interactively with continuous

scatterplots (e.g. increasing resolution or changing focus).

Application
Continuous scatterplots are identical to conventional discrete

scatterplots in the limit process of infinitely dense sample points.

Finding regions of interest in the continuous scatterplot by

zooming and panning requires recomputation.

Significantly reduced computing time motivates the user

to explore the data set.

Brushing and linking allows exploration of data sets

in an efficient way.

Example:

Continuous scatterplot for Hurricane Isabel data set.

Air temperature is mapped to horizontal axis, air pressure to

vertical axis.

White selection box indicates brushed area, which is highlighted

in the volume rendering as a transparent blue region.

Performance
Comparison of CPU and GPU implementations – time in seconds to

compute a continuous scatterplot.

Preprocessing step for GPU version only

CPU: Intel 2.4 GHz

GPU: Nvidia GeForce 8800 GTX

Speed-up ranging from 40x – 100x

[BW08]

S. Bachthaler and D. Weiskopf:

Continuous scatterplots.

IEEE Transactions on Visualization and

Computer Graphics,

Vol. 14, No. 6, pp. 1428–1435, 2008.

[WMFC02]

B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno:

Tetrahedral Projection using Vertex Shaders.

In Proc. IEEE Volume Visualization and Graphics

Symposium 2002, pp. 7–12, 2002.

Sven Bachthaler

bachthaler@visus.uni-stuttgart.de

Steffen Frey

steffen.frey@visus.uni-stuttgart.de

Daniel Weiskopf

weiskopf@visus.uni-stuttgart.de

Nobelstraße 15 70569 Stuttgart GERMANY

Implementation
Pre-sorting of tetrahedra based on class of projection.

Class 1 and 2 (see illustration) are of relevance only, additional

classes exist, but are degenerate cases of classes 1 and 2.

Subdivide data set to fit in GPU memory.

Blocks process only one class of tetrahedra to ensure

conherence of threads within a warp.

Project tetrahedra based on algorithm by [WMFC02].

Find suitable triangle topology for projected tetrahedron.

Compute density for each tetrahedron.

Bottleneck of original CPU implementation since this step

requires many computations.

Improved kernel performance due to pre-sorted tetrahedra.

Diverging threads in a warp force the whole warp to serially

execute each branch pass.

Compose continuous scatterplot by drawing each projected

tetrahedron using additive blending.

Class 2

Class 1

GPU

Once per data set:

•Pre-sort tetrahedra

•Upload data subsets

For each update request:

•Project tetrahedra and compute density

•Draw continuous scatterplot

CPU

Brushing and linking

References

Conventional discrete scatterplot (left image) and continuous scatterplot (right

image) for the tooth data set.

1.25

7.88

13.15

0.86

5.11

8.46

0.03

0.08

0.32

.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Bucky

Isabel

Tooth

time in seconds

GPU Preprocessing CPU

98x faster

41x faster

41x faster

