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(a) colliding droplets splash out (b) laser pulse travelling through bottle (c) colliding hot and cold air (d) five jets induce a wave

Figure 1: Bottom row: Examples of our contours visualizing bounds and non-continuous changes of spatio-temporal processes. Contour

color indicates temporal occurrence (begin ⊣��������� ⊢ end). Top row: Renderings of individual time steps roughly outline temporal

development, with gray contours in the background for context (cf. Sec.7 for a detailed discussion of individual examples).

Abstract

We visualize contours for spatio-temporal processes to indicate where and when non-continuous changes occur or spatial

bounds are encountered. All time steps are comprised densely in one visualization, with contours allowing to efficiently analyze

processes in the data even in case of spatial or temporal overlap. Contours are determined on the basis of deep raycasting that

collects samples across time and depth along each ray. For each sample along a ray, its closest neighbors from adjacent rays

are identified, considering time, depth, and value in the process. Large distances are represented as contours in image space,

using color to indicate temporal occurrence. This contour representation can easily be combined with volume rendering-based

techniques, providing both full spatial detail for individual time steps and an outline of the whole time series in one view. Our

view-dependent technique supports efficient progressive computation, and requires no prior assumptions regarding the shape or

nature of processes in the data. We discuss and demonstrate the performance and utility of our approach via a variety of data

sets, comparison and combination with an alternative technique, and feedback by a domain scientist.

CCS Concepts

•Human-centered computing → Visualization techniques; Scientific visualization;

1. Introduction

Increasingly fast computing systems for simulations as well as high-
accuracy measurement techniques enable the generation of time-
dependent data sets with high resolution in both time and space. To
analyze this kind of data, the most popular approach is to manually
browse through the time steps individually or to investigate respec-
tive animations. This allows to look at the full spatial information,
and well-known rendering and interaction techniques can be used.
However, relying on animation alone has been shown to be ineffec-
tive as only a limited number of frames can be memorized by an
observer (e.g., [JR05]). Generating a static visualization for spatio-
temporal data is challenging though due to issues ranging from
occlusion and visual clutter to performance limitations for large

data. Mitigating this via temporally sparse techniques selecting only
a subset of time steps for visualization (e.g. [LS08, TLS12, FE16])
requires either selection criteria tuned for a specific type of data or
involves the costly explicit quantification of time step differences,
and interesting process transitions may still be missed. While tempo-
rally dense techniques visualize all time steps, these typically restrict
themselves to specific (user-defined) characteristics or features to
circumvent the occlusion problem ( [BVMG08, JR05, LSB∗17]).

In this paper, we introduce a temporally dense technique (com-
prising all time steps) that is generic (requires no assumption about
the shape or nature of processes in the data), and can be computed ef-
ficiently even for larger data. Our contour visualization technique is
targeted towards indicating where and when non-continuous changes
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occur, and with this depict spatio-temporal processes in the data
both spatially and temporally (e.g., Fig.1). Our spatially sparse visu-
alization can further be complemented with volume rendering-based
techniques to also show the spatial structure of selected time steps.
In the following, after reviewing related work in Sec.2, we present
the main contributions of this work:

• our progressive visualization approach using spatio-temporal con-
tours (Sec.3), comprised of individual components for . . .

• . . . deep raycasting collecting samples (Sec.4),
• . . . distance quantification for space-time-value samples (Sec.5),
• . . . and contour rendering (Sec.6);
• a discussion of results with different data sets, a time step selec-

tion technique [FE16], and domain scientist feedback (Sec.7).

We finally conclude our work in Sec.8.

2. Related Work

Time-varying data visualization. A variety of different approaches
has been proposed for the visualization of time-dependent 3D
data. One line of work treats the data as a space-time hypercube,
and applies extended classic visualization operations like slicing
and projection techniques [WWS03] or temporal transfer func-
tions [BVMG08] (cf. Bach et al. [BDA∗16] for an overview of
techniques in this area). Tong et al. [TLS12] use different metrics
to compute the distance between data sets, and employ dynamic
programming to select the most interesting time steps on this ba-
sis. Among others, they use the earth mover’s distance (EMD, aka
the Wasserstein metric), which is a common metric to compute
the difference between mass distributions (conceptually, it deter-
mines the minimum cost of turning one (mass) distribution into
the other) [RTG00]. Based on the concept of the EMD, Frey and
Ertl [FE17b, FE17a] presented a technique to generate transfor-
mations between arbitrary volumes, providing both expressive dis-
tances and smooth interpolates. Among others, they apply it to the
streaming selection of time steps in temporal data that allows for
the reconstruction of the full sequence with a user-specified error
bound. Frey [Fre17] discusses a neural network-based technique to
estimate and progressively compute such distance metrics for time
series data. Based on a similar distance metric, Frey and Ertl [FE16]
presented an approach to adaptively select time steps from time-
dependent volume data sets for an integrated visualization, with the
selection being based on the principle of optimizing the coverage
of the complete data. While characteristic time steps can be put
into spatial relation via integrated volume rendering, occlusion can
be a larger issue for multiply covered regions, and interesting pro-
cess transitions may still be missed despite the adaptive selection.
Strengths and weaknesses of this approach and the contour-based
technique introduced in this paper are complementary, as discussed
later in Sec.3 and demonstrated in Sec.7.

A large body of work in time-dependent volume visualization is
based on feature extraction. Lee et al. [LS09a] extract trend relation-
ships among variables for multi-field time varying data. Time Ac-
tivity Curves (TAC) that contain each voxel’s time series have been
used as the basis for different techniques (e.g. [FMHC07, LS09b]).
Wang et al. [WYM08] extract a feature histogram per volume block,
characterize the local temporal behavior, and classify them via k-
means clustering. Based on similarity matrices, Frey et al. [FSE12]

detect and explore similarity in the temporal variation of field data.
Widanagamaachchi et al. [WCBP12] employ feature tracking graphs.
Silver et al. [SW97] isolate and track representations of regions of
interest. The robustness of this approach has been improved by Ji
and Shen [JS06] with an EMD-based global optimization corre-
spondence algorithm. Scale-space based methods and topological
techniques have also been used here (e.g., [WDC∗07, NTN15]).
Schneider et al. [SWC∗08] compare scalar fields on the basis of the
largest contours. Tory et al. [TRM∗01] compare medical imaging
modalities for time-varying medical data as well as several methods
for presenting the data (including glyphs) from the view of visu-
alization. Post et al. [PVH∗03] and McLoughlin et al. [MLP∗10]
provide overviews on time-varying flow visualization. Note that the
time-dependent volume visualization approaches discussed operate
in object space, while we our technique works in image-space.

Illustration-based techniques. The visual style of our contour-
based visualization technique bears similarities to different
Illustration-based techniques, that often pursue similar goals with
different means. Brambilla et al. [BCP∗12] give an overview of
illustrative techniques for flow visualization. In their categorization,
we belong to the low-level visual abstractions, which define how to
depict a certain structure (whereas high-level techniques increase the
communicative intent of the illustration, like close-ups or exploded
views). In contrast to our image-based technique, the vast majority
of illustration-based visualization techniques for time-varying data
requires explicit higher-level data analysis (like feature tracking),
enabling descriptive annotations, but impeding generality. To visual-
ize single volumes, Burns et al. [BKR∗05] extract and render sparse
linear features, such as silhouettes and suggestive contours. Eden
et al. [EBG∗07] propose a cartoon rendering style for liquid anima-
tions, using bold outlines to emphasize depth discontinuities and
oriented textures to convey motion. Based on feature detection and
tracking, Joshi and Rheingans [JR05] apply illustration techniques
to time-varying data sets, like speedlines, flow ribbons, and strobe
silhouettes. In another work, they conducted a user study to demon-
strate the effectiveness of illustrative techniques [JR08] (however,
only simple movement behavior of a simple square shape was consid-
ered). Lu and Shen [LS08] compose sample volume renderings and
descriptive geometric primitives into interactive storyboards. Meyer-
Spradow et al. [MSRVH06] extract motion dynamics via block
matching, and use glyphs and speedlines (among others) for visual-
ization. Balabanian et al. [BVMG08] define a set of temporal styles
for temporally overlapping voxels when rendering time-varying vol-
ume data. Application-specific techniques have been proposed to
visualize the structure and time evolution of hurricanes [JCRS09],
and the visualization of ocean eddy characteristics [LSB∗17].

3. Overview

Motivation & Concept. The main goal of our visualization is to
depict spatio-temporal processes in the data, and locate them both
spatially and temporally. For this, we consider discontinuities with
respect to space, time, and value. This yields a spatially sparse yet
temporally dense overview on the process behavior that efficiently
deals with spatial and temporal occlusion (still, overdraw of contours
can occur). For instance, in Fig.1a, details can be seen even though
there are several layers of different processes occurring at the center
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Figure 2: Overview of spatio-temporal contour visualization: sam-

ples S are generated via deep raycasting, and the distances between

image cells (captured by a temporal histogram of distancesH and

the maximum distance d̂) are determined by sample matching for

the final contour rendering. For high responsiveness, a progressive

approach can incrementally increase the sampling density via ρ.

at different points in time (initially colliding drops in blue, extending
disk in green, and emerging drops in red). Similarly, in Fig.1d, it can
be seen where parts break away and vanish from the big wave going
upward, which is not only occluded temporally but also spatially at
individual time steps by the wave itself. Conceptually, we resolve
the issue of temporal occlusion via abstraction, however, at the cost
of neglecting spatial information of individual time steps, which is
also crucial for most analysis tasks (particularly when investigat-
ing new data for the first time). However, its sparsity allows our
approach to be combined with direct volume rendering techniques
to supplement spatial information of individual time steps, even
in place (e.g., cf. Fig.4a). In particular, advanced spatio-temporal
visualization techniques rendering multiple adaptively selected time
steps can be used as well (e.g, [FE16], cf. Fig.6d, Fig.7 & Fig.8f).
The combination complements strengths and weaknesses of the
individual techniques: while temporal selection-based techniques
present spatial information, they strongly suffer from spatial and
temporal occlusion, and their temporal sparseness leads to interest-
ing time steps or process transitions being missed, or bounds of the
processes not being captured to their full extent. Note that while our
technique is primarily designed to provide meaningful static images,
it can also be useful to provide temporal context for animations
(cf. accompanying videos).

Computing contours across space, time and value requires some
kind of normalization to bring these different domains together (in
this paper, we use thresholds T for this). Choosing T does not
strictly require prior information about object shapes or processes
in the data, but essentially means steering the sensitivity with which
contours are detected (cf. Fig.3, Fig.5 & Fig.8 for respective param-
eter studies). Finally, note that similar to most other spatio-temporal
visualization techniques, we assume that data is spatially registered
over time, which is typically inherently true for data from simula-
tions, but may involve extra effort for measured data.

Approach Outline. We give an outline of our progressive ap-
proach in Fig.2. First of all, deep raycasting is used to generate a
set of samples Sc for each cell (at position c) by following one ray
through the center of each cell and then further through the time-
dependent data set. To achieve high responsiveness, a progressive
approach may be used that incrementally increases the sampling
density in image and objects space via resolution parameter ρ. In
image space, the standard size of a cell is one pixel, with ρ defining
larger (square) side lengths for progressive computation (i.e. ρ = 4

Algorithm 1 Deep raycasting traces rays through space and time

and collects space-time-value samples s (cf. Sec. 4). Here, C is

the set of cells (in our case, one cell corresponds to a pixel), and

V comprises the full view setup (including camera configuration,

volume data information, and transfer function). ρ controls the

sampling density in time as well as in image and object space.

1: function DEEPRAYCASTING(C,V )
2: S←∅
3: for all c ∈Cρ ⊲ for all (image space) cells C

4: Sc←∅
5: for all stime⊂ρ Vtime ⊲ loop over all considered time steps

6: ⊲ (spatially) sample ray segment in volume bounding box

7: for all sspace⊂ρ IntersectBox(c,V )ρ

8: svalue←V (c,sspace,stime)
9: if svalue 6= 0 ⊲ omit full transparent samples

10: Sc← Sc∪ (sspace,stime,svalue)
return S

results in a 4× 4 pixel cell). In contrast to standard volume ray-
casting, we trace the ray both through space and time, with ρ also
directly controlling step sizes in both domains (with the reference
for ρ = 1 being the sampling once per voxel and time step). No
compositing is done but a sample set S is collected and stored for
each cell. On this basis, we then compute the distances between cells
by looking for nearest neighbors in adjacent cells for each sample
(sample matching). With this, we determine for each cell the largest
distance d̂ to a nearest neighbor of any sample, and we create a time
histogram H that captures these distances of all samples. Finally,
we use d̂ andH to do contour rendering, whereas d̂ determines the
opacity of cell, andH is used to compute its color.

4. Deep Raycasting

Deep raycasting generates a set of samples Sc for each cell c by
tracing a ray through the center of c through space and time, storing
samples instead of compositing them as in standard direct volume
rendering (DVR). Below, we introduce space-time-value samples,
discuss our deep raycasting procedure conceptually, and finally
outline our efficient implementation.

Space-Time-Value Samples. Each sample s ∈ Sc generated dur-
ing deep raycasting features one (normalized) scalar for each dimen-
sion (value, space, and time):

svalue We sample the volume along a ray, fetching the respective
data values and directly applying the volume transfer function
w.r.t. opacity (making the result consistent with DVR).

stime We further store the normalized time stamp stime of a sample:
stime = t − Tmin/Tmax − Tmin , with Tmin and Tmax denoting the first and
last time step in the considered time series.

sspace Finally, the depth of a sample along a ray in object space
is captured. It is quantified via vector projection onto the unit
view vector e that goes through the center of the view plane, i.e.,
sspace = p ·e, with p being the (normalized) position of the sample
s in object space. Note that this yields a maximum value range of
sspace ∈ [0,

√
3], in contrast to svalue,stime ∈ [0,1].

Deep Raycasting Procedure. In Alg.1, we conceptually outline
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Algorithm 2 Compute maximum distances d̂ and a distance his-

togramH w.r.t. time for each cell c (cf. Fig.5). For this, we match

its sample set Sc to the sample set of its right and bottom neighbor

(Sc→ and Sc↓, respectively), considering thresholds T .

1: function SAMPLEMATCHING(S,T )
2: for all Sc ∈ S

3: d̂c← 0;Hc← 0
4: ⊲ go right and down bidirectionally
5: for all Sa,Sb ∈ [(Sc,Sc→),(Sc→,Sc),(Sc,Sc↓),(Sc↓,Sc)]
6: for all sa ∈ Sa

7: d∗← 1 ⊲ initialize distance d∗ with 1 (i.e., no match)

8: for all sb ∈ Sb ⊲ find the best match in Sb for sa

9: ⊲ distance between samples via d(·, ·, ·) (Eq.1)
10: d∗←min(d∗,d(sa,sb,T ))
11: Hc←+ (sa,d

∗) ⊲ update the time histogram

12: d̂c←max(d̂c,d
∗) ⊲ update match value

return d̂,H

our procedure to generate the set of samples S. For each cell c

(Line 3), we trace a ray through time (Line 5) as well as all space
(Line 7), and determine the value svalue of the sample from the
volume (Line 8). The sampling density in time as well as in image
and object space is controlled by ρ. Next, we add the sample to the
respective set Sc of the cell (Line 10), if the sample value is non-zero
(Line 9, avoiding the explicit storage of “empty” space).

Implementation Notes. Deep raycasting potentially creates a
vast number of samples, which could induce prohibitively large
storage costs for (GPU) memory. For this reason, we densely store
samples via a two-pass approach in our implementation (essentially
trading computation time for storage efficiency). First, we just count
the number of (non-empty) samples generated for each cell, and
calculate the offsets for dense sample storage. In the second pass,
we then actually collect and store the respective samples (skipping
rays that produced no samples in the second pass).

5. Sample Matching for Quantifying Distances between Cells

With the samples S collected via deep raycasting, we now compute
distances between samples of neighboring cells. First, we explain
how distances between samples are computed, before discussing the
steps to determine d̂ andH for each cell.

Distance between Space-Time-Value Samples. To quantify the
total distance d between samples, we individually compute distances
w.r.t. space, time, and value. For each dimension, we consider a
threshold T that essentially defines until when two samples can still
count as a match. Using T , the distance function d(a,b,T ) between
two samples a and b is computed as follows:

d(a,b,T ) = min(1,max(||avalue−bvalue||/T value,

||aspace−bspace||/T space,

||atime−btime||/T time)).

(1)

Here, d(·, ·,T ) = 0 means that the samples are a close match, while
there is no match with d(·, ·,T ) ≥ 1. Here, we only consider the
largest occurring individual distance to clearly represent large dis-
continuities, and to prevent these from getting indistinguishable

(a) Ttime = 0. (b) 0.0125 (c) 0.025 (d) 0.1

Figure 3: Impact of T time on the contours of the Droplet Mea-

surement data, an experiment of a droplet forming at the top and

eventually falling to the bottom. (a) For Ttime = 0 all (non-empty)

samples contribute. (b) For a small threshold (Ttime = 0.0125), the

second smaller drop coming down later can now be seen, and it

shows that the initial large drop takes some time to form in the

top before falling down. Further increasing the threshold to (c)

Ttime = 0.025 and (d) Ttime = 0.1 reduces visual clutter induced by

limited spatial and temporal resolution, but also loses details.

in the case of overlap with other processes (as would be the case
when averaging distances, for example). Essentially, T defines the
sensitivity with which contours are detected. We use Tspace = 0.4
and Tvalue = 0.5 unless otherwise noted (Ttime is reported for each
case as it also depends on temporal data resolution).

Distance Computation Procedure. We individually match the
sample set Sc of each cell c against the sample sets of its neighbors to
the right Sc→ and below Sc↓ (Alg.2). For each neighboring set, we
first attempt to find the best match for all samples (∈ Sc) in the other
set (Sc→ or Sc↓), and then the other way around (Line 5). In detail,
for each sample in the one set sa ∈ Sa (Line 6), we aim to determine
the smallest distance d∗ to any sb ∈ Sb, i.e., we compute d∗ ←
minsb∈Sb

(d(sa,sb,T )) (Lines 8–10). With this, we update the time
histogramHc (Line 11) and the maximum distance d̂c (Line 12) for
the cell accordingly (these are used for contour rendering, cf. Sec.6).

With this procedure, all pairs of cells sharing an edge are con-
sidered exactly once. Note that the main focus of interest for our
contour visualization lies on differences between the sample sets of
cells rather than on the samples of cells by themselves. The purpose
of essentially storing the distances of two cell pairs (neighbors to the
right and below) in one cell is that is allows for a direct presentation
of the respective results (cf. Sec.6).

Efficient Implementation of Distance Computation. To con-
sider only as few samples as possible when determining the best
matching sample sb ∈ Sb for sa (Alg.2, Line 8), we exit the search
early when a sb with a distance d∗ < 0.1 has been identified, as
these values only induce a negligible impact with low opacity
in the contour visualization already. We also generate samples
in deep raycasting such that they are implicitly sorted w.r.t. time
(cf. Sec. 4, Alg. 1), which means that only samples sb ∈ Sb with
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(a) Contours (r = 4) ⊙ vol. ren. (b) r = 2 (left), r = 8 (right)

t = 5

t = 30

t = 40

Figure 4: A hot and cold plate induce collisions of hot and cold

air in the space between them (Ttime = 0.2). (a) When cold air

moves down, it maintains a relatively broad shape (i) (vice versa for

hot air moving upward). During the course of their collision, their

shape becomes thinner closer to their respective plates, but they get

broader in the middle where they meet (ii). (b) We also compare the

impact of different splat radii r.

sb
time ∈ [sa

time−Ttime,sa
time +Ttime] need to be taken into account.

In addition, we start the search from the best matching sample sb
∗

for the previously considered sa (i.e., from the previous iteration of
the loop from Line 6), as often close samples along a ray produce
good matches due to coherence. From sb

∗ we simultaneously search
in both directions of the sample list until aforementioned range is
left or a distance d∗ low enough for an early exit is identified.

6. Contour Rendering

We now determine the color C of each cell c with the maximum
distance value d̂ of any of its samples Sc to its right and the bot-
tom neighbors (Sc→ and Sc↓), and its histogram H of difference

values with respect to time. Here, d̂ maps to opacity Cα, while H
determines to RGB color Crgb. Opacity Cα is determined directly

based on d̂ via Cα = d̂2 (note that d̂ ∈ [0,1]). This emphasizes areas
with large distances and suppresses the small changes that naturally
occur whenever the data undergoes transformation processes. To
determine Crgb, we use the (normalized) histogramH to compute a
weighted sum of our color map. For this, we use a isoluminant color
map [Kov15] (i.e., featuring colors of equal perceptual lightness)
to achieve good visibility of all time steps on a white background.
To further improve the readability of contours, we splat C with a
Gaussian kernel on our image to get thicker lines, and blend color
to black along the outside. The respective weights w are computed
via w = exp(x2/(2r2)), with distance x to the respective pixel and a
radius of r = 4 (if not specified otherwise). This weight w is then
used to blend the color toward black (via wCrgb), and to decrease
the visual impact via the opacity (wCα). The result is then simply
composited with the current image pixel via the over-operator ⊙.
Splatting is implemented as a gather and not a scatter operation to
allow for efficient parallel execution without atomics. Finally, the
resulting contour visualization may be presented to the user on its
own or composited with a volume rendering.

t = 1 t = 10 t = 20 t = 30 t = 40 t = 50 t = 59

(a) Tvalue = 0.0625 (b) Tvalue = 0.5 (c) Tvalue = 4

Figure 5: Simulation of a supernova, in which the supernova con-

stantly rotates throughout the course of the time series. A large

temporal threshold Ttime = 0.4 is used, and the spatial threshold is

varied to indicate inner processes (a, b), or exclusively focus on the

outline of the rotation (c).

7. Results

In our evaluation, we use the data sets listed in Tab. 1 (also see
accompanying videos), and an image resolution of 1024×1024. We
first discuss the expressiveness of our contour visualization (Sec.7.1),
and report the feedback of a domain scientist regarding the Droplet
Simulation (Sec.7.2). Afterwards, we outline the implementation
of our contour visualization system (Sec.7.3), before evaluating its
performance (Sec.7.4). Finally, we discuss limitations along with
potential directions to address them in future work (Sec.7.5).

7.1. Spatio-Temporal Contour Visualization

Below, we first outline spatio-temporal bounds for comparably sim-
ple processes (a), before addressing the visualization of more com-
plex, temporally overlapping spatio-temporal processes (b). After
that, we evaluate the case of recurrent processes (c), and discuss
the impact of thresholds T as well as the splatting radius r (d). Fi-
nally, we compare our contour visualization results to the temporal
selection-based technique by Frey and Ertl [FE16], and discuss the
results of combining them into one visualization (e).

(a) Spatio-Temporal Bounds

Here, we choose comparably large values for the temporal thresh-
old Ttime to get a rough overview of the process behavior (yet ne-
glecting details). In the HotRoom data set (Fig.4), a hot and cold
plate lead to collisions of hot and cold air in the space between them.
The contours indicate that when cold air moves down (or vice versa
the body of hot air moves up), it exhibits a relatively broad shape of
approximately the size of the plates (Fig.4a, (i)). It also shows that
in the course of the collision, the body of hot and cold air becomes
thinner toward their respective plates, but they extend in the middle
where they meet (ii). The Supernova data (Fig.5) depicts the results
of a supernova simulation. The contours in Fig.5c primarily depict
the outer bound of structure evolving over time, indicating a rotating
movement of the supernova (for lower value thresholds Tvalue in
Fig.5a & b more details are visible, cf. discussion below in (d)).

(b) Complex, Temporally Overlapping Processes

Next, we analyze more complex processes, also with the goal to
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(a) Contours (with annotations, Ttime = 0.96)

(b) ρ = 2

(c) ρ = 4 (d) [FE16] (e) Contours ⊙ [FE16]

Figure 6: Two drops fly toward each other (i), collide asymmetrically, and form a disk from which then individual droplets emerge again (ii)

(a). The splash out movement for droplets closer to the center of the disk (iii-a) is much smaller compared to droplets at the vicinity of the disk

(iii-b). For the larger droplets, their contours indicate constant changes due to droplet oscillation, e.g., (iii-c). We also show the results for

different resolution parameters ρ ((b) & (c)) as well as respective results of the temporal selection technique by Frey and Ertl [FE16], both by

itself (d) and in combination with our contour-based visualization (e).

Figure 7: The Bottle data set depicts a laser pulse traveling through

a bottle (captured via Femto Photography [VWJ∗13]). As indicated

by the contours (Ttime = 0.06), on its way through the bottle from left

to right, the laser gets reflected and scattered in different ways with

sharp process transitions. Here, the contour image is complemented

with the temporal selection of Frey and Ertl [FE16] with five selected

time steps (cf. Fig.1b for just our contours).

able to see and analyze different phases. For this, we particularly use
relatively small values for Ttime to maintain finer details, although
at the cost of a higher visual complexity.

The Droplet Simulation data set is a simulation of a droplet
collision that can roughly be separated in different phases (Fig.6a).
Initially, two droplets move toward each other until they collide
asymmetrically. This is indicated by the blue outline in the center
(annotated via (i)). After this, the two droplets merge and form a
disk from which then individual droplets emerge again (ii). While
the disk extends in size, different parts get separated, until eventually
individual droplets constitute themselves. This happens both toward
the inner parts as well as the outer boundaries of the disk. The
individual droplets then continue flying outward, as can be nicely
seen from the contours. In addition, it also shows that the splash
out movement for droplets toward the center of the disk (iii-a) is
much smaller compared to droplets at the vicinity of the disk (iii-

b). For the larger droplets, the variation in their contours further
indicates constant changes during the outward movement (this is
due to droplet oscillation [KBE∗17], e.g., (iii-c)). We also provide
domain expert feedback for this data set below in Sec.7.2.

The Bottle data set depicts a laser pulse shooting through a bottle
(Fig.1b, Fig.7). Our contour visualization clearly shows the overall
movement of the laser pulse from left to right, as well as several
sharp transitions between different process phases. Individual spots
around the bottle further depict the appearance of reflecting light in
the surrounding. Early on, the pulse forms a structure with a sharp
tip (Fig.7, (i)). Later, it smoothly transitions into a wave with a large
vertical extent that ends as indicated by a green line in the contour
visualization (ii). Finally, a small laser pulse reappears that initially
moves left-to-right (iii) and eventually fills the top of the bottle (iv).

The 5Jets data set results from a simulation modeling five jets
entering a region (Fig.8). They induce an upward movement process,
splitting early into waves of different speeds. Most prominently
via its large “bell” shape, the visualization in Fig. 8c shows the
movement of the main wave going from the bottom to the top, with
its extent decreasing in the process. The blue curved lines in the
center indicate the point in time and the position when and where
a larger chunk of the big wave vanishes (cf. Fig. 8 (left column),
t = 97). The green lines close to the jets indicate smaller parts
that break away from the bottom of the big wave, and then vanish
halfway to the top (t = 162). Here, our contour visualization shows
where these waves disappear, although this would be occluded in a
volume rendering. The same is true for a second phase of smaller
waves breaking away (around t = 208, just below the main wave). In
both phases of waves breaking away, the almost uniform color of the
lines indicates that these move relatively quickly, at approximately
the same speed of the main wave. The densely drawn contours at
the bottom, upward from the five jets, indicates the high variation in
their vicinity throughout the whole time series.

(c) Analysis of Recurrent Behavior

Next, we want to discuss how recurrent behavior manifests itself
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t = 97

t = 162

t = 208

t = 339

(a) ρ = 2

(b) ρ = 4 (c) Contours (Tspace = 0.8,ρ = 1)

(d) Tspace = 0.1

(e) Tspace = 3.2 (f) [FE16] ⊙ Contours

Figure 8: The 5Jets data set is the result of a simulation modeling five jets. It depicts an upward movement which splits into waves of different

speeds (with a large wave going all the way to the top). The dense color transition at the five jets at the bottom indicates steadily high variation

in the upward movement in their vicinity, while the blue and green “curves” indicate small, quickly moving waves that also terminate quickly.

With the contour image acting as a reference (c), we also show the results for different resolution parameters ρ ((a) & (b)), different spatial

thresholds Tspace ((d) & (e)), as well as a combination with the temporal selection technique by Frey and Ertl [FE16] (f).

with our contour visualization at the example of the von Kármán

data set (Fig.9). First, we look at a contour visualization that shows
the full time range (Fig. 9a). The visualization essentially shows
different stages of development. In the beginning, the process devel-
ops mainly in horizontal direction, with smaller left-to-right swings
(Fig.9c & Fig.9d). After that, there is a transition to recurrent be-
havior in which mass partitions move from the top to the bottom
in essentially two lanes (Fig.9g & Fig.9h). In the transition period
toward this recurrent behavior, the mass partitions don’t go all the
way to the bottom but stop earlier (this shows via the green “lines”
within each lane, cf. Fig. 9e & Fig. 9f). The two lanes mentioned
above appear more clearly in the contour visualization that only
depicts the second half of the time series (Fig.9b). Here, it can be
seen that there are no contours within lanes, which indicates that the
contained processes exhibit smooth transitions.

(d) Impact of thresholds (Ttime, Tspace, Tvalue) & splat radius r

First of all, if any threshold is set to T = 0, only the outer bounds
of processes can be seen, as there are no valid matches for any
sample (cf. Fig.3a). Accordingly, with T = 0, essentially all time
steps are simply fully composited on top of each other. This shows
a rough outline of overall behavior, yet particularly details are lost
within regions where multiple processes overlap spatially at different
points in time. In general, the larger a threshold T is, the lower is
its sensitivity to changes in the respective domain.

For a small temporal threshold (Ttime = 0.0125), different struc-
tures can be seen that were obfuscated before, i.e., the second smaller
drop coming down at a later point in time (Fig.3b). It can also be
seen that the initial drop takes some time to form in the top before
falling down. Further increasing the threshold (Ttime = 0.025) re-
duces the contours on the way that were primarily detected due to
limitations w.r.t. spatial and temporal resolution (Fig.3c). An even
larger threshold (Ttime = 0.1) reduces these resolution artifacts, but
also information is lost, e.g., regarding the slowly forming droplet
on the top (Fig.3d). Similarly, a small value threshold Tvalue results
in a significant visual impact even of smaller changes in the rotating

supernova (Tvalue = 0.0625, Fig. 5a), while a larger Tvalue = 0.5
leads to only the larger value changes within the supernova being
visible (Fig. 5b). When further increasing the threshold, only the
outline of the rotating behavior can be seen (Tvalue = 4, Fig. 5c).
The same behavior can be observed in the spatial domain with the
spatial threshold Tspace: lots of smaller details induced by smaller
discontinuities can be seen for a small Tspace = 0.1 (Fig.8d), with
the sensitivity decreasing for larger threshold values Tspace = 0.8
(Fig.8c) and Tspace = 3.2 (Fig.8e). As can be seen across all sample
dimensions, changes to the thresholds T mostly have an impact on
the sensitivity, while the most prominent process outlines persist.
The impact of the splat radius r behaves as can be expected intu-
itively: larger values for r mean that contours are more pronounced,
however, at the cost of covering more image space (Fig.4).

(e) Selection-basedVisualization: Comparison & Integration

We now compare our contour visualization with a time step
selection-based technique at the example of the approach by Frey
and Ertl [FE16] (note that we focus on spatial aspects in this work,
and therefore use their integrated volume rendering, but their ab-
stract visualization of time step similarity is not further considered
in this context). In general, these type of techniques maintain the
full spatial information, and intuitively provide a good overview on
the processes in the data (e.g., Fig.6d). However, they suffer from
both spatial and particularly temporal occlusion, and their temporal
sparseness means that interesting processes or events may be missed,
and that the transition between selected time steps is not represented.
In contrast, our contour-based approach largely neglects shape in-
formation. To alleviate the individual weaknesses and complement
each others strengths, we can exploit the sparsity of our contour-
based visualization by combining both visualization techniques in
one rendering. As discussed in the following, while this comes at
the cost of a higher visual complexity, it also significantly increases
the amount of information in a single image.

In the volume rendering alone, even though only using a subset
of data mitigates temporal occlusion, different selected time steps
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occlude each other, like in the bottom at the five jets in Fig.8f and
in the center around the droplet collision in Fig. 6e. In addition,
in Fig. 8f, there is also spatial occlusion as the waves cover the
small elements that split off. In combination with our contour-based
technique, we can see where and when individual split-offs appear
and vanish. In Fig.6e, contours indicate where individual droplets
split of at the outer disk, and supplement additional information
what happens in the center area that suffers from strong temporal
overlap. In addition, the bounds of the processes cannot be assessed
completely from the volume rendering alone, but are supplemented
via contours, like how far the disk and the droplets splat out (Fig.6e),
or how long individual parts persist and how far the wave extends
upwards (Fig. 8f). Our contour-based visualization further adds
missing information regarding process transitions, like the fact that
and when individual droplets smoothly form from the splashing out
disk (Fig. 6e), or when and where sharp transitions occur for the
pulse traveling through the bottle (Fig.7)

Similar to our technique (see performance discussion below in
Sec.7.4), the selection-based technique by Frey and Ertl [FE16] also
supports a progressive approach, yet the costs overall are signifi-
cantly higher: |T |/2 time steps need to be compared to complete the
refinement (with each comparison being in the order of hundreds of
ms), and the selection of time steps requires the adequate exploration

of the
(|T |
|S|

)

possibilities to select |S| time steps from |T | time steps.

For the 5Jets and the Droplet simulation data sets, first selection
results where generated after 61 s and 83 s, with 4733 s and 13096 s
until full completion, respectively (cf. Frey and Ertl [FE16] for a
detailed performance analysis).

7.2. Domain Expert Feedback

We presented our approach to an expert from the field of aerospace
thermodynamics regarding the Droplet Simulation data. His feed-
back is reported in the following.

Drop collisions appear in many technical applications, like fuel
injection, fire suppression and spray drying, as well as in nature, for
example in clouds, and are therefore a relevant topic in multiphase
flows. Numerical studies are often used, to investigate the influence
of different parameter, such as the relative velocity of the drops or
the excentricity of the collision. When investigating large sets of
parameters it becomes important, to be able to quickly understand
the major differences in the simulation results. As droplet collisions
are a highly transient process, which needs to be highly resolved in
time, obtaining a quick overview has proven difficult.

The proposed method, applied to a DNS of a drop collision gives
insight into several relevant aspects of the physical process. The
amount of droplets ejected from the center is represented by the
amount of finger-like structures. These structures also provide the
trajectories of the droplets, as well as an approximate information on
their velocity, given by the distance to the collision. The width of the
fingers provides information of the size of the droplets. Furthermore,
the wave-like structure of the contour represents droplet oscillations
and can even provide some insight into the frequencies, amplitudes
and dampening of the droplets in relation to other droplets. It can
also be observed that the smaller droplets do not exhibit oscillating
behavior, which due to their lower liquid mass are below the critical

Ohnesorge number. The presented method provides a fast way to
gain a broad qualitative insight into different temporal and spatial
aspects of a drop collision and would be well-suited to support
numerical parameter studies of this phenomenon.

7.3. Implementation of the Contour Visualization System

While volume rendering of individual time steps is typically suffi-
ciently fast to deliver interactive performance, deep raycasting and
difference computations for contour generation induce significantly
higher costs (cf. discussion below in Sec.7.4). Not only is the com-
plete data set (space and time) considered for deep raycasting, but
also a matching between different sample sets needs to be computed
for each cell. These costs essentially prohibit our approach to run
at full resolution with interactive rates for user exploration (at least
with our current implementation). While it is not our primary goal
in this work to create an interactive visualization system with our
contours, we still try to minimize wait times (cf. our discussion
regarding the efficient implementation of individual components
in Sec.4 and Sec.5), and integrate our space-time contours into a
system that shows computed results when become available.

To yield a system that is responsive at any time, we run contour
computations in a separate thread from volume rendering and the
main interaction thread. Here, we take a progressive approach that
quickly generates low-resolution results, which are then replaced by
higher-resolution renderings as soon as they become available. In our
implementation, we successively compute three different resolution
levels: ρ = 4, ρ = 2, and finally ρ = 1 (which corresponds to the full
resolution in image and object space, as well as time). Whenever a
user interaction necessitates a new computation run, we notify the
contour computation thread such that it aborts it current procedure
and restarts to complete the new request. This occurs whenever the
camera or the transfer function are changed (which triggers a full
recomputation), or the thresholds T are adjusted (only the matching
and rendering need to be updated). To be able to compute new results
in the background, we use two buffers storing the visualization-
relevant data, which are swapped whenever a new result becomes
available (naturally, old results are not displayed anymore once they
have been invalidated). When two GPUs are available, we dedicate
the faster GPU to deep raycasting and difference computation, while
the other one handles user interaction and standard raycasting.

OpenGL and GLSL are used to render the volume. We designed
the time-relevant steps of contour visualization (deep raycasting,
difference computation, and contour rendering) to be easy to par-
allelize and implemented them using CUDA. All cells can be pro-
cessed independently throughout our pipeline, and we run respective
computations in parallel: each ray in deep raycasting, the match-
ing procedure for each cell for distance computation, and contour
splatting for rendering. In deep raycasting, we use nearest neighbor
lookups to avoid introducing artificial values through interpolation.

7.4. Performance Evaluation

We evaluate the implementation of our approach on a machine
equipped with an Intel Core i7-6700 CPU, 32 GB of memory, and
two NVIDIA GPUs. We use a GeForce GTX 1070 (with 8 GB of
memory) for the interactive display via OpenGL (including standard
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Data Set DR pass 0 (in s) DR pass 1 (in s) |S| (in Millions) Distances (in s) Rendering (in s) Total (in s)
Name, spatial resolution, time steps (Sec.4) (Sec.4) number of samples (Sec.5) (Sec.6) ρ = 1 ρ = 2 ρ = 4

5Jets (Fig.8), 1283,340 8.28 0.54 0.04 5.23 0.35 0.03 338.12 20.84 1.26 10.83 0.52 0.06 0.129 0.129 0.129 24.47 1.54 0.26
Bottle (Fig.7), 900×430,300 0.06 0.01 0.00 0.03 0.00 0.00 4.58 0.57 0.07 0.03 0.00 0.00 0.151 0.136 0.129 0.27 0.15 0.13

Droplet Measurement (Fig.3), 182×878,315 0.02 0.00 0.00 0.02 0.01 0.00 2.09 0.26 0.03 0.01 0.00 0.00 0.129 0.129 0.129 0.18 0.14 0.13
Droplet Simulation (Fig.6), 2563,500 39.04 2.63 0.22 21.69 1.59 0.13 143.75 8.98 0.56 7.46 0.58 0.09 0.132 0.130 0.130 68.32 4.93 0.58

Hotroom (Fig.4), 181×912,50 1.58 0.10 0.01 0.70 0.05 0.00 210.87 12.89 0.71 5.24 0.25 0.02 0.129 0.129 0.129 7.65 0.53 0.16
von Kármán (Fig.9), 101×301,800 0.11 0.02 0.00 0.05 0.01 0.00 14.82 1.85 0.23 0.19 0.03 0.02 0.130 0.129 0.161 0.48 0.18 0.18

Supernova (Fig.5), 4322,60 8.05 0.55 0.05 6.25 0.43 0.03 451.15 28.16 1.75 11.93 0.60 0.05 0.131 0.131 0.131 26.36 1.71 0.26

Table 1: Performance for data sets and resolution levels ρ ∈ [1,2,4] (from left to right in each table cell). DR stands for deep raycasting.

(a) t ∈ [0,800] (b) t ∈ [400,800]

(c) 147 (d) 171 (e) 368

(f) 434 (g) 700 (h) 726

Figure 9: CFD simulation of a von Kármán vortex street. (a) Dif-

ferent stages of development can be seen (Ttime = 0.04). In the

beginning of the simulation, the process develops mainly horizon-

tally, with smaller scale swings from the left to the right (Fig.9c &

Fig.9d). After that, there is a transition to recurrent behavior mov-

ing from top to bottom in what are essentially two lanes (Fig.9g &

Fig.9h). (b) This is shown more clearly in the contour visualization

only depicting the second half of the time series.

volume raycasting and rendering of the overlay). For deep raycasting,
difference computation, and distribution computation, we use a
TITAN X with 12 GB of memory. Tab.1 shows results for individual
steps of our approach across all data sets considered in this paper, as
well as different resolution parameters ρ. Regarding deep raycasting,
it can be seen that the first raycasting pass (DR pass 0) typically takes
longer than the second pass (DR pass 1), despite the fact that the
second pass actually needs to store samples. However, we are able
to only consider non-empty cells in DR pass 1, which significantly
decreases the number of rays that need to be traced. Accordingly,
it shows that this difference also depends on the fraction of empty
cells in the respective view (cf. renderings). For instance, it is almost
a factor of two for the Droplet Simulation, but less for 5Jets and the
Supernova. Overall, as our views in all cases practically capture the
full volume, these timings are related to the total number of voxels
in the data set (in space and time).

The total time for the distance computation is strongly related to
the total number of samples in a data set (|S|). However, other factors
have an impact as well. This can be seen for instance when com-

paring the Droplet Simulation and the Hotroom. Here, the Hotroom
more strongly benefits from our optimizations regarding sample
matching coherency (cf. Sec.5) as it features a massive, coherent
body of mass in object space, and therefore yields a faster com-
putation than the Droplet Simulation even though it features more
samples in total. The time to actually render the contours is around
20 ms (and hence rather negligible overall). Naturally, there is a
huge performance gap between the 2D data sets (Bottle, Droplet
Measurement, and von Kármán), which even compute at interactive
rates for the full resolution (ρ = 1), and the 3D data sets (5Jets,
Droplet Simulation, Hotroom, and Supernova) due to the much
larger amount of samples that need be generated and processed.

In our progressive approach, we do not generate the final result
right away (with resolution parameter ρ = 1), but start with larger
values to achieve higher responsiveness in interactive applications.
For this, we consider two more resolution levels with ρ = 2 and ρ =
4. Doubling ρ means that only a quarter of the rays are traced, with
half the step size in object space and half the time steps, resulting
in a theoretical speedup of 16×. However, at runtime the actual
performance scaling varies due to a variety of influence factors
like reduced coherence, with an overall lower speedup when going
from ρ = 2 to ρ = 4 compared to ρ = 1→ ρ = 2 (or, in general,
when considering cases with lower numbers of samples). As can be
seen from Tab.1, practically, we observe overall speedups for our
computationally intense 3D data sets from ρ = 1 to ρ = 2 of 16.5×
for 5Jets, 12.6× for Droplet Simulation, 17.1× for Hotroom, and
13.1× for Supernova. Regarding the visual impact of ρ (Fig.6a–c &
Fig.8a–c), the visualizations are qualitatively very similar, although
the impact of the significantly lower resolution can clearly be seen,
especially for ρ = 4. In any case, we consider ρ = 4 and particularly
ρ = 2 to be close enough to get a good impression of changes
induced by interaction at interactive rates, whether it is changing the
camera position or parameters T . However, note that there is still
potential for performance improvements with further optimization
as discussed below in Sec.7.5.

7.5. Discussion of Limitations & Directions For Future Work

Expressiveness. Our contour visualization technique is targeted to-
wards indicating where and when non-continuous changes occur
or spatial bounds are encountered in the captured spatio-temporal
processes. With this, our technique is able to give a comprehensive
overview on the whole progression captured in the time-dependent
data, but it can also be helpful to investigate local effects. While our
approach yields a spatially sparse representation that performs well
overall when dealing spatial and temporal occlusion, a large number
of processes in the same area can still lead to overdraw and visual
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clutter. This can be mitigated by reducing the amount of information
to be shown, for instance by adjusting the threshold parameters T
to less sensitive (larger) values, or by restricting the considered time
frame. In general, not all information that is potentially of interest
can be represented by our visualization. Most prominently, our con-
tour visualization does not directly capture the form of the structures
in the data, and how their shape changes (as long as changes occur
smoothly and continuously). For example, in the Droplet Simulation
data, the lanes going outward from the splash only represent the
droplet paths, but not the shape of individual droplets themselves.
Only if non-continuous changes happen, or a shape persists for a
longer period of time, individual shapes can be seen (like the hanging
drop in the Droplet Measurement data in Fig.3). As shown earlier,
to overcome this, we can combine our contours with an additional
spatial view that can fill in the missing spatial detail for a selected
time step. For this, we use standard volume rendering (Fig.4) and the
approach by Frey and Ertl [FE16] (Fig.7, Fig.6 & Fig.8), but other
approaches would work as well [LS08, TLS12]. However, if used as
an overlay to volume rendering, our contours also occlude a portion
of the volume rendering (or vice versa, depending on the order of
compositing). Naturally, the issue of overdraw can also exist for
contours by themselves, when there are many complex processes
occurring in a certain area over the course of a time series. This
can be mitigated by carefully choosing parameters, i.e., the fraction
of the screen space taken by the contours can be controlled via the
thresholds T , and the Gaussian we use for contour splatting could
also be adjusted for thicker or thinner contours via r. In addition,
different overlay modes can be toggled interactively (compositing
order and color / gray).

In our current implementation, the color of the contours only
depicts the distribution H with respect to time. Here, we aim to
investigate further visual cues that we could integrate to potentially
depict depth or value as well. Regarding interaction possibilities, our
contours currently give a good indication of the numerous aspects
regarding spatio-temporal behavior, but they do not directly support
subsequent closer investigation. For this, we aim to extend the inter-
action possibilities of our approach to the selection of (4D) subsets
of the data by supporting picking on our contours. Furthermore,
while our technique conceptually supports data values of arbitrary
dimensionality (requiring only a meaningful pairwise distance func-
tion), we only considered scalar data in this paper. Accordingly,
in future work, we plan to extend and evaluate our approach with
higher-dimensional data values like vectors and tensors.

Performance. We further aim to increase the computational effi-
ciency of our approach by improving our implementation in general,
and exploring potentials for pre-processing in particular. While our
progressive computation scheme adjust the sampling rate via ρ, the
actual data is only stored in full resolution. Potential performance
issues for large-scale data in particular could be addressed with
out-of-core techniques or level-of-detail data representations. In
addition, a hybrid CPU-GPU implementation could be employed
to fully exploit the amount of available memory on a system. In
our current implementation, we extensively use the GPU to achieve
low response times. However, for all steps of our approach that
run on the GPU, we also have a multicore CPU implementation
(we only discussed and evaluated our GPU implementation in this
paper due to its superior performance). Finally, we run the deep

raycasting procedure twice to achieve dense sample storage. While
we already skip rays known to produce no samples the second pass,
more elaborate acceleration approaches could be used based on the
information from the first pass. We could further develop dynamic
storage reservation schemes on the basis of atomic operations to
potentially only require a single pass. We also use regular device
memory in our implementation, and switching to texture memory
for storing volumes in our GPU implementation has the potential to
further accelerate deep raycasting.

8. Conclusion

In this paper, we introduced contours for the visualization of spatio-
temporal processes. In particular, they indicate where and when
non-continuous changes occur or spatial bounds are encountered
in the data. All time steps are comprised densely in one visualiza-
tion, and our contours allow to efficiently analyze processes even
when there is spatial or temporal overlap. The contour visualization
is based on samples collected via deep raycasting that traces rays
across both object space and time to capture spatio-temporal effects.
For each sample along a ray, its closest neighbors from adjacent
rays are determined, considering time, depth, and value. While we
rely on parameters both to combine these different dimensions and
to adjust the sensitivity with which the contours depict process dis-
continuities, we require no prior assumptions regarding the shape or
nature of processes in the data. Large distances are represented as
contours in image space, mapping color to temporal occurrence. We
conceptually discussed and showed that this contour representation
can easily be combined with volume rendering-based techniques
(including advanced spatio-temporal visualization approaches), pro-
viding both full spatial detail for individual time steps and an outline
of the whole time series in one view. To allow for a responsive visu-
alization system, our view-dependent technique supports efficient
progressive computation. Finally, we discussed and demonstrated
the performance and utility of our approach via a variety of data
sets, comparison and combination with an alternative technique,
and feedback by a domain scientist. For future work, we aim to ex-
tend our approach to address limitations and explore new directions
(cf. Sec.7.5 for a comprehensive discussion). Among others, we plan
to support higher-dimensional data values like vectors and tensors,
further explore the integration with complementary spatio-temporal
visualization techniques, and extend interaction possibilities.
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