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Abstract—We present a development environment for distributed GPU computing targeted for multi-GPU systems as well as graphics

clusters. Our system is based on CUDA and logically extends its parallel programming model for graphics processors to higher

levels of parallelism, namely the PCI bus and network interconnects. While the extended API mimics the full function set of current

graphics hardware – including the concept of global memory – on all distribution layers, the underlying communication mechanisms are

handled transparently for the application developer. To allow for high scalability, in particular for network interconnected environments,

we introduce an automatic GPU-accelerated scheduling mechanism that is aware of data locality. This way, the overall amount of

transmitted data can be heavily reduced, which leads to better GPU utilization and faster execution. We evaluate the performance and

scalability of our system for bus and especially network level parallelism on typical multi-GPU systems and graphics clusters.

Index Terms—GPU computing, Graphics Clusters, Parallel Programming
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1 INTRODUCTION

EACH new generation of GPUs provides flexible pro-
grammability and computational power which ex-

ceeds previous generations. At the beginning of this re-
markable process, graphics hardware expanded its real-
time shading capabilities from simple Gouraud shad-
ing and texture mapping to rendering with multiple
texture stages and combiners. While graphics hardware
became more powerful, it also became intricate and
difficult to use. As a consequence, shading languages
– which have already been successfully used in non-
real time applications – have been brought to main-
stream graphics hardware. One of the first projects with
this objective was the Stanford Real-Time Programmable
Shading Project [19]. Nowadays, graphics hardware is
capable of executing very costly and complex algorithms
formerly only practical with CPUs. Processing non-
graphics tasks on GPUs further spurred the development
of programming models which are detached from the
traditional rendering pipeline policy. Various interfaces
for high-performance, data-parallel computations exist,
among others NVIDIA’s CUDA [17], AMD’s CTM [18],
Brook [4] and Sh [11] and their spin-offs PeakStream
and RapidMind. All expose the intrinsic parallelism of
GPUs to the user and provide means to perform general-
purpose computations. This research area received in-
creasing attention lately and the dedicated webpage
at www.gpgpu.org gives an impression of the broad
range of applications.
Efficiently programming GPUs imposes specific rules

on the programmer: Algorithms need to be formulated in
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a way such that parallel execution is possible. Although
this applies to all parallel languages, from now on we
will focus on CUDA, which serves as a basis for our
extended system. While the pure computational power
of contemporary GPUs exceeds 380GFlops in peak per-
formance, the bottlenecks are the limited amount of
available memory (1.5GB for NVIDIA QuadroFX GPUs
and 2.0GB for AMD Firestream 9170 stream processors)
and memory bandwidth: Challenging problems with
data sets which do not fit into memory at once require
the computation to be split and executed sequentially
or they might introduce a significant communication
overhead stressing the bus bandwidth. Fortunately, the
internal scheduling and sequencing process is hidden
from the programmer; however, it is necessary to handle
multiple GPUs manually by creating threads for each
GPU and by explicitly taking care of shared data transfer.
Our work addresses higher levels of parallelism and

computations with large data sets: Our extended pro-
gramming language, CUDASA, behaves similarly to a
single-GPU CUDA system, but is able to distribute com-
putations to multiple GPUs attached to the local system
or to machines linked via network interconnects. Data-
intensive computations, which would require sequential
execution on a single GPU, can easily be parallelized to
multiple GPUs and further accelerated by distributing
the workload across cluster nodes. This distribution is
realized with distributed shared memory provided by
the CUDASA architecture. For this, a part of each node’s
main memory is dedicated for the shared memory range.
Unfortunately, frequent accesses to this memory layer
can cause significant communication overhead, which
may even exceed the actual computation time on the
computation nodes [23]. Therefore, we further extended
the CUDASA framework and focused on a new schedul-
ing mechanism that aims for data locality when paral-
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lelizing the work over the network. Below the cluster
level, our unified approach seamlessly integrates and
exploits the intrinsic parallelism of GPUs – which is
also reflected in CUDA and similar languages – and is
thus able to provide a consistent development interface
for a great variety of target configurations including
inhomogeneous systems with single or multiple GPUs
and bus or network interconnects.
Extending CUDA means that existing specifications

and possibly restrictions transfer to our system. Never-
theless, we think that this makes it easier for program-
mers to equip their existing CUDA programs with multi-
GPU support or to deploy their experience with CUDA
to develop such programs.
The remainder of this article is organized as follows.

The next section gives an overview about related work
and GPU programming languages in particular. We reca-
pitulate the details of the CUDASA programming model
and the compile process in section 3. Providing paral-
lelism across buses and networks is described in sec-
tion 4 and 5. Section 5.1 introduces the new scheduling
mechanism and illustrates the division of labor between
the programmer and the system to make the scheduler
data locality-aware. Finally, we analyze our system with
different synthetic and real-world test cases on multi-
GPU systems and a graphic cluster and provide detailed
comparisons to the original CUDASA system.

2 RELATED WORK

As indicated in the previous section, various options
exist for performing general-purpose computations on
GPUs (GPGPU). Several languages and interfaces have
been especially designed for treating the GPU as a
stream processor, and most of them build upon C/C++
and extend it with specific instructions and data types.
The high-level language programming of GPUs has

been introduced with Sh [11] and C for Graphics [7] and
later led to API-specific shader languages such as GLSL
and HLSL. The increasing computational resources and
flexibility of GPUs sparked the interest in GPGPU and
specialized programming environments – besides tradi-
tional rendering APIs – have been developed: Brook [4]
extends C with simple data-parallel constructs to make
use of the GPU as a streaming coprocessor. Glift [10] and
Scan Primitives [21] focus on convenient data structures
and facilitate the implementation of various algorithms
on GPUs. Moerschell and Owens [14] presented an
implementation of distributed shared memory for multi-
GPU systems, while Scout [12] takes one step further and
provides modules for scientific visualization techniques.
The probably most commonly used high-level GPGPU
language is NVIDIA’s CUDA [17], which serves as a
basis for our work. It is in line with the aforementioned
languages and extends C/C++ with parallel stream pro-
cessing concepts. CTM [18] breaks ranks and provides
low-level assembler access to AMD/ATI GPUs for hand-
tuned high-performance computations.

Basically all of the aforementioned languages can be
used to distribute computations across multiple GPUs,
but – and this is an important motivation for our work –
only if this is explicitly implemented and “hardwired”
in the host application. None of them provides language
concepts for parallelism on higher levels such as across
multiple GPUs or even across nodes within a network
cluster. Most related to the CUDASA project is the Zippy
framework [5], which provides means to program GPU
clusters using a distributed shared memory model and
a CUDA-like computation kernel concept supporting
several high-level shading languages as basic building
blocks. However, Zippy exposes its functionality in the
form of an API and a library rather than a programming
language.

In the CUDASA project, we focus on the higher level
parallelism and extend CUDA to enable multi-GPU and
cluster computing with the goal of increased perfor-
mance. Another use of parallel computations is to intro-
duce redundancy for reliable computations, which has
been investigated by Sheaffer et al. [22]. Both directions
benefit from ROCKS clusters and CUDA Roll [16]: A live
boot system which easily and quickly sets up network
clusters with CUDA support.

The Cell Broadband Engine of Sony, Toshiba and IBM
has a hierarchy of transient memory similar to modern
GPUs: Each of the Synergistic Processing Elements is
equipped with local memory, which is comparable with
the on-board memory of a GPU, while the Power Pro-
cessor element works on system memory like a conven-
tional CPU. Sequoia [6] is a language extension to C++
that provides means of programming such a system by
explicitly specifying the work on each memory hierarchy
level. The programmer implements methods for a task
object that control the workload distribution on higher
levels and perform the actual computations on the low-
est level.

Languages for stream processing on GPUs profit from
experiences from parallel programming with CPUs and
network clusters. This is a mature research area beyond
the scope of this work. However, we want to mention
STAPL [1], which provides containers and algorithms
compatible with the C++ STL but supporting paralleliza-
tion. They enable STL algorithms to run in parallel with
minimal code changes. A parallel programming lan-
guage worth mentioning is the Jade language extension
to C [20], which requires the programmer to explicitly
specify memory access patterns for code segments. Jade
uses this information to determine possible concurrency
on a per code segment base and generates deterministic
parallel code. Although an automatic detection of paral-
lelism is a desirable feature, we require the programmer
to explicitly specify it due to our commitment to CUDA.
To the interested reader, we recommend Bal et al.’s
comprehensive overview [3] of parallel languages and
their comparison of parallel programming paradigms [2]
as further reading.
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Fig. 1. Schematic overview of all four abstraction layers of the CUDASA programming environment. The topmost layer

is placed left, with decreasing level of abstraction from left to right.

3 SYSTEM OVERVIEW

In this section, we recapitulate the CUDASA program-
ming environment and its programming model. Both are
tightly coupled to the schematic overview in Figure 1
and we recommend referring to it while following the
description.

3.1 Programming Environment

The CUDASA programming environment consists of
four abstraction layers as depicted in Figure 1 from left
(top layer) to right (bottom layer). Each of the three lower
levels addresses one specific kind of parallelism: The
lowest utilizes the highly parallel architecture of a single
graphics processor, while the next higher level builds
upon the parallelism of multiple GPUs within a single
system. The third layer adds support for distributing
program execution in cluster environments and enables
parallelism scaling with the number of participating
cluster nodes. Finally, the topmost layer represents the
sequential portion of an application, which issues func-
tion calls executed exploiting the parallelism of the un-
derlying abstraction levels. Each layer exposes its func-
tionality to the next higher level via specific user-defined
functions, which are declared using the extended set of
function type qualifiers implemented in CUDASA. These
functions are called using a consistent interface across all
layers whereas each call includes the specification of an
execution environment, i.e. the grid sizes, of the next
lower level.

GPU Layer: The lowest layer (see Figure 1, right) simply
represents the unmodified CUDA interface for program-
ming GPUs. Existing CUDA code does not require any
modifications to be used with our system – quite the
contrary, it serves as a building block for higher levels
of parallelism.

Bus Layer: The second layer (Figure 1) abstracts from
multiple GPUs within a single system, for example SLI,
Crossfire, Quad-SLI configurations, or single-box setups
based on the QuadroPlex platform. A CPU thread to-
gether with a GPU forms a basic execution unit (BEU)
called host on the bus layer. The programmability of
these BEUs is exposed to the programmer through task
functions, which are the pendants to kernel functions of
the GPU layer. We follow the execution model of CUDA
and define that a single call to a task consists of a grid
of distinctive blocks. A scheduler distributes the pend-
ing workloads to participating hosts and also handles
inhomogeneous system configurations, e.g. systems with
two different GPUs or different number of physical PCIe
lanes to the GPUs. The scheduling process works trans-
parently to the user and the desirable consequence is
that the application design is completely independent of
the underlying hardware. For example, a once compiled
CUDASA program is able to fully exploit the power
of a QuadSLI system by executing four kernel blocks
in parallel, while it processes blocks sequentially on a
single-GPU system.

While the main focus of CUDASA is to provide easy
access to multiple GPUs, the bus layer is also able to
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delegate tasks to CPU cores. This enables us to use CPU
cores (in parallel if available) for tasks of a CUDASA
program which cannot be executed on GPUs or for
which the user wants the execution to happen on CPUs.
Tasks, both with and without GPU support, can be used
together in arbitrary combinations. We can also use CPU
cores to emulate a system with multiple GPUs using the
built-in device emulation provided by CUDA. The user
specifies the operation mode (CPU only or CPU+GPU)
of each task at compile time and optionally defines a
maximum number of parallel devices to be used.

Network Layer: The third layer adds support for clusters
of multiple interconnected computers. Its design is very
similar to the underlying bus layer: A single computer,
called node, acts as the BEU of the network layer and
all nodes process blocks of the jobgrid (issued through
a job function) in parallel. Again, the scheduling mech-
anism takes care of distributing the workload in both,
homogeneous and inhomogeneous environments.

The difference to all underlying layers is that the
network layer has to provide its own implementation
of a distributed shared memory model in software. The
distributed memory provides means to transfer data
between blocks of a jobgrid and successive jobs. It can
be considered as the pendant to the global memory in
CUDA, which is used to transfer data between blocks
and kernels. However, in contrast to GPUs, this memory
does not exist as an “onboard component”, but each
node makes a part of its system memory available
to the distributed shared memory pool. That is, the
global address space that the shared memory exposes
to the programmer is scattered across all nodes. Conse-
quently, memory accesses have varying costs depending
on whether the requested data is already resident on
the requesting node. Therefore, the CUDASA scheduler,
which originally assigned jobs arbitrarily to nodes [23],
has been extended to do a data locality-aware schedul-
ing if the programmer can declare the memory access
patterns of the application at compile time.

Of course, the network layer can be omitted during
program development as well as at compile time, when-
ever the program execution is targeted for a single-PC
configuration only.

Application Layer: The topmost layer describes a se-
quential process, which issues calls to job functions. It
also takes care of the (de-)allocation of distributed shared
memory, which holds input and output data and is
processed by the nodes. The distributed shared memory
enables the processing of computations which exceed the
available system memory of a single node. It is also the
means of communication between the sequence and the
jobs as well as between multiple jobs. A single job in turn
can communicate with the tasks it spawns simply via
system memory and each task communicates with the
GPU by acting as a normal CUDA host and transferring
data via global memory.

3.2 Programming Model

In this section, we describe the three main components of
our extensions to the CUDA programming environment:
A runtime library, a minimal set of extensions to the
CUDA language itself, and the self-contained CUDASA
compiler.
Runtime Library: The runtime library provides the ba-
sic functionality of job and task scheduling, distributed
shared memory management, and common interface
functions, such as atomic functions and synchronization
mechanisms for all new abstraction layers. We imple-
mented two versions, one with network layer support
for cluster environments and one without, for single
node execution.
Language Extensions: Our extensions to the origi-
nal CUDA language solely introduce additional pro-
grammability for the higher levels of parallelism, while
the syntax and semantics of the GPU layer remain
unchanged. Hence, existing CUDA code does not re-
quire any manual modifications and can be used with
CUDASA directly. For each new layer (bus, network,
and application layer), CUDASA defines a set of func-
tion type qualifiers to specify a function’s target BEU
and its corresponding scope visibility. This is in line
with the existing CUDA qualifiers __device__ and
__global__ for functions executed on a graphics de-
vice and __host__ functions acting as the front-end
for CUDA device functions. Table 1 lists the CUDA
and CUDASA keywords. As indicated there, each layer
introduces specific built-in variables holding block in-
dices and dimensions (Table 1, second column from
right), each accessible to functions of the corresponding
and the underlying layers. In order to allow the CU-
DASA network scheduler to work data locality-aware,
the programmer must have the possibility to provide the
required information about distributed shared memory
usage for every job function invocation using some kind
of source code annotation. These annotations are realized
using three new keywords (Table 1, right column):

• __descriptor__ is used to mark a function as
code that determines the memory ranges used by
a job.

• __using__ resembles the standard C++ keyword
and connects the aforementioned function with a
pointer parameter of a job function.

• __nomap__ is a keyword to control whether the
compiler should generate code which automatically
maps the memory.

Sec. 5.1 describes how these keywords are integrated
into the CUDASA language. It is worth mentioning that
the use of the keywords for declaring data locality is
completely optional. That is, applications in CUDASA
as described in [23] are transparently handled by the
extended language without any changes. However, of-
ten the programmer is aware of the distributed shared
memory access patterns of the jobs before the start of
the jobgrid execution. The newly introduced scheduler
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mechanism uses this information to improve scheduling
in terms of remote network communication costs and
consequently to improve the overall execution time.

Finally, CUDASA needs a way to link the abstraction
layers and define function calls to the respective next-
lower layer. Again, we follow CUDA and generalize
its concepts to higher levels of abstraction: A CUDA
function call requires the host level to specify an execution
configuration, which includes the requested grid and
block sizes for the parallel execution on the GPU. In an
analogous manner, functions of each layer are allowed
to call the exposed functions (see Table 1) of the next
underlying layer. In order to maintain a consistent inter-
face, we use the CUDA-specific parenthesized parameter
list (denoted with <<< ... >>>) for the specification of the
execution configuration.

Obviously, we limited our extensions to the CUDA
language to a minimal set of new keywords. However,
they provide powerful control over all levels of addi-
tional parallelism and enable the tackling of much more
complex computations while keeping the additional pro-
gramming and learning overhead for the user very
low. Specifically, programming CUDASA job and task
functions is very similar to CUDA kernel functions with
respect to distributing the workload. All communication-
related tasks are completely hidden from the user and
are covered by the CUDASA runtime library and the
compiler described next.

CUDASA Compiler: The last component of the CU-
DASA programming environment is the self-contained
compiler, which processes CUDASA programs and out-
puts code which is then compiled with the standard
CUDA tools (Figure 2). Although regular expressions
can handle the new set of keywords, we cannot use
them for the translation of CUDASA code to the under-
lying parallelization mechanisms. This requires detailed
knowledge of variable types and function scopes and can
only be obtained from a full grammatical analysis. The
code translation process is described in detail in section 4
for the bus layer and in section 5 for the network layer.

CUDA itself exposes the C subset of C++ to the
programmer, while some language-specific elements rely
on C++ functionality, e.g. templated texture classes. CU-

DASA needs to act as a pre-compiler to CUDA including
the ability to parse the header files of CUDA. Conse-
quently, the CUDASA compiler needs to cope with the
full C++ standard to translate the new extensions into
plain CUDA code. We opted for building our compiler
using Elkhound [13], a powerful parser generator ca-
pable of handling C++ grammar, and Elsa, a C/C++
parser based on Elkhound. We extended the compiler to
support all CUDA-specific extensions to the C language
as well as our extensions described in the previous
paragraphs. The compiler takes CUDASA code as input
and outputs code which is strictly based on CUDA
syntax without any additional extensions. This means
that the additional functionality exposed by CUDASA is
translated into plain C code, which refers to functions of
the CUDASA runtime library.

4 BUS PARALLELISM

The goal of bus parallelism is to scale processing power
and the total available memory with the number of
GPUs within a single system. For this, a task needs to
be executed in parallel on multiple graphics devices,
i.e. blocks of a taskgrid are assigned to different GPUs.
CUDA demands a one to one ratio of processes or CPU
threads to GPUs by design. Thus, each BEU of the bus
layer has to be executed as a detached thread. Practically
speaking, a host corresponds to a single CPU thread with
a specific GPU device assigned to it.
Calling a task triggers the execution of the host threads
and initializes the scheduling of the taskgrid blocks.
A queue of all blocks waiting for execution is held
in system memory. Idle host threads process pending
blocks until the queue is empty, i.e. the execution of
the complete taskgrid is finished. Mutex locking ensures
a synchronized access to the block queue (this requires
multiple operations in a single critical section), provides
the necessary thread-safety, and also avoids a repeated
processing of blocks on multiple BEUs. The block-
threads are organized using a thread pool in order to
keep the overhead for calling a task at a minimum. This
is particularly important to avoid the costly initialization
of CUDA for every function call.
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Abstraction Exposed Internal Built-ins Additional Keywords

application layer __sequence__

network layer __job__ __node__ jobIdx, jobDim __descriptor__, __using__, __nomap__
bus layer __task__ __host__ taskIdx, taskDim
GPU layer __global__ __device__ gridDim, blockIdx

blockDim, threadIdx

TABLE 1

The extended set of function type qualifiers of CUDASA. New keywords are printed bold-face. Internal functions are

only callable from functions within the same layer, while exposed functions are accessible from the next higher

abstraction layer. Built-ins are automatically propagated to all underlying layers.

A polling mechanism achieves load balancing on the
block level across hosts as the actual execution time for
each block implicitly controls how many of them are
assigned to each BEU. This does not guarantee deter-
ministic block assignment, but it does guarantee parallel
execution, even for inhomogeneous setups, as long as
enough pending blocks are left in the queue.
The automatic translation of code using the CUDASA

interface into code which can be executed in parallel
by multiple CPU threads handles the parameter pass-
ing, built-in variables, and the invocation of the task
scheduler. Parameters and built-ins are grouped into a
combined structure to meet the requirements of the un-
derlying POSIX threads. The CUDASA compiler builds
wrapper functions for each user-defined task, which
perform the following steps:

• Copy the function parameters into the wrapper
structure.

• Populate the queue of the scheduler with all blocks
of the taskgrid.

• Determine the built-ins for each block.
• Wake up BEU worker threads from the pool.
• Wait for all blocks to be processed (issuing a taskgrid
is a blocking call).

Additionally, the signature of a task is modified inter-
nally to accept the wrapper structure. The parameters
as well as built-ins are then reconstructed from the data
structure.
The following simplified example demonstrates the

code transformation of a function definition: The com-
piler translates the definition of a task, written in CUD-
ASA code

task void t func ( i n t i , f l o a t ∗ f ) { . . . }

into the following internal structure and modified func-
tion:

typedef s t r u c t {
i n t i ; f l o a t ∗ f ; // user−defined
dim3 taskIdx , taskDim ; // bu i l t−ins

} wrapper struct t func ;

void t func ( wrapper struct t func ∗param ) {
i n t i = param−>i ;
f l o a t ∗ f = param−>f ;
dim3 taskIdx = param−>taskIdx ;

dim3 taskDim = param−>taskDim ;
{ . . . }

}

Please note that the semantics of pointer-typed param-
eters is consistent with the CUDA parameter handling
and the validity of pointer addresses is ensured. The
result of the transformation is plain CUDA code and can
be passed into the standard CUDA tool chain.
CUDASA also adds support for atomic functions on

the bus parallelism level to enable thread-safe commu-
nication between multiple task invocations. The imple-
mentation of those atomic functions is straightforward
using the lock instruction in assembler code.

5 NETWORK PARALLELISM

The network layer is very similar to the bus layer, not
only conceptually, but also regarding its implementation.
Jobs are the pendants of the tasks on the bus layer. The
difference is that jobgrids are not executed by operating
system threads, but on different cluster nodes. The par-
allelization on the network level is implemented using
MPI2 as we require remote memory access capabili-
ties for implementing our distributed shared memory
manager. Invocations of a job (issued by the application
running on the head node) are translated by the CU-
DASA compiler into a broadcast instructing all nodes
to run a job. The transfer of function parameters is
realized – analogously to the bus layer – by packing them
together with the built-in variables, e.g. the jobIdx, into
a structure and handing it over to the network.
In order to listen for function calls, all nodes except

for the head node run an event loop waiting for broad-
cast messages. The corresponding code is automatically
generated by the CUDASA compiler and includes the
parameter serialization for all jobs. Besides the invocation
of jobs, the event loop also handles collective communi-
cation operations required for the distributed memory
manager of CUDASA described next.

5.1 Distributed Shared Memory

The network layer of CUDASA allows for computations
which do not fit into the main memory of a single node.
By design, the head node solely controls the job distribu-
tion and does not participate in any computation. Please
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note that the head node of course can run as a thread
on any node within the cluster. Each other cluster node
makes a part of its memory available to the distributed
shared memory pool, which is exposed as a continuous
virtual address range to the application. Allocations in
shared memory are split into evenly sized segments and
one is stored on each node.
Access to distributed shared memory is not opaque

via variables and a paging mechanism: The programmer
explicitly requests specific memory ranges to be cloned
from the Global Partitioned Address Space to a node as
it is the case with Global Arrays [15]. CUDASA provides
memcpy-style functions for accessing shared memory
from the head node and special mapping functions for
all other nodes. The mapping functions also handle the
write-back for mappings that are not read-only when the
mapping is closed.
Besides explicitly mapping shared memory segments

using the corresponding API functions in a job function,
CUDASA now allows to declare which distributed mem-
ory segments are required for a specific job at compile
time. For this, the programmer provides an additional
memory descriptor function (MDF) that returns offset and
size of the memory range to be mapped. MDFs are iden-
tified using the __descriptor__ modifier introduced
with our latest extensions to CUDASA and must comply
with a pre-defined signature: They take a job index and
the grid dimension as input and return the aforemen-
tioned list of mapping constraints. When defining a job
function, any parameter which is a pointer to distributed
shared memory (dsm in the following example) can be
marked for automatic mapping using a function. We
opted for specifying a function pointer in the defini-
tion rather than an expression (directly describing the
memory ranges), for the sake of readability. Otherwise,
even the simple mapping description in the following
example would have totally cluttered up the definition
of jfunc.

descr ip tor void memDesc(
unsigned in t ∗ outS tar t ,
unsigned in t ∗outSize ,
dim3 idx , dim3 grid ) {

∗ ou tS t a r t = ( idx . y ∗ MATRIX SIZE
∗ JOB SIZE + idx . x
∗ JOB SIZE ∗ JOB SIZE
∗ s i z eo f ( f l o a t ) ;

∗ outSize = JOB SIZE ∗ JOB SIZE
∗ s i z eo f ( f l o a t ) ;

}

void j func ( using memDesc f l o a t ∗dsm ) ;

The descriptor memDesc maps from a logical, two-
dimensional, quadratic data field to uniformly sized
blocks, which are stored linearly in distributed shared
memory. For simplicity of the code example, the total
data size is assumed to be a multiple of the size of the
sub-blocks.

The CUDASA compiler uses an MDF in a parameter
declaration to automatically map the requested mem-
ory range for each job execution before the actual user
code is executed. In fact, the compiler inserts the same
memory mapping instructions as the user would have
to specify within the function body before the actual
implementation of the job function. The pointer to the
distributed shared memory which is passed as parame-
ter to the function is replaced with the pointer to the
locally mapped memory on the node. The automatic
mapping is valid as long as the current invocation of a
job function is being executed. Consequently, the compiler
inserts the corresponding unmapping instructions where
the control flow may leave the user-defined function
body. By using this new language construct of CU-
DASA, access to distributed shared memory becomes
completely transparent within a job function. The benefit
for the programmer is obvious: In contrast to prior
CUDASA versions, the implementation of the algorithm
and the data selection are now separated. However, it
remains possible to choose the memory access paradigm
individually for each parameter.
If a formal parameter is declared as a pointer to a

constant memory range, then the memory is regarded as
read-only and all changes made to the mapped memory
are not written back to distributed shared memory, but
discarded after execution. This behavior mimics the un-
mapping API functionality from the CUDASA runtime
library to discard data.
In addition, the CUDASA compiler has the option

to delay the unmapping of automatically mapped dis-
tributed memory segments until the current node enters
the next job invocation. At this point, the system can
determine whether the mapping of the prior invocation
may be re-used. This allows CUDASA to decrease the
network traffic for (un-)mapping operations with appli-
cations accessing the same input data from multiple jobs.
However, this behavior is optional and recommended
solely for read-only mappings. Furthermore, it is only
beneficial if either all jobs are using the same part of
distributed memory, or if all jobs doing so are executed
consecutively. At the moment, the CUDASA scheduler
does not guarantee this. It solely uses the declared
access patterns prior to a job invocation to optimize the
workload distribution based on data locality.
This is implemented in a new CUDASA runtime li-

brary function, which evaluates the MDF for all param-
eters of a job and for all jobs of a grid. The compiler
inserts a call to this function at the start of the execution
of a jobgrid on each node. Using the information on per-
job shared memory accesses, a node is able to compute
which of these jobs have the most overlap of required
memory ranges with locally resident parts of the dis-
tributed shared memory. It communicates these jobs as
its preferred work items to the head node. Thus, instead
of waiting for the head node to assign an arbitrary job
to an idle BEU, the node formulates a list of preferred
jobs from which the head node can choose.
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If the head node cannot fulfill the request, e.g. because
all requested jobs have already been assigned to other
nodes, it orders the requesting node to send another
packet of work items to choose from until an appropri-
ate one was found. By choosing a reasonable number
of jobs offered to the head node, e.g. the number of
nodes in the cluster, such message round trips can be
effectively reduced to a minimum in most cases. Our
experiments showed that the head node is able to fulfill
the requests from the first list in most cases. Multiple
messages are usually required only if the algorithm is
prone to load imbalance caused by the computational
complexity rather than by distributed memory accesses.
In these situations, the head node cannot serve a client
immediately when the execution of the job grid ends: All
jobs using distributed memory segments resident on the
requesting node have already been processed by other
nodes, e.g. because they have been faster in processing
their preferred work items. In this case, the master
requests the node to prepare a new list of preferred
items.
There are mainly two reasons for a node not being

able to provide a list of preferred jobs for the head
node. First, if all jobs using memory which is locally
resident on the node have already been completed. And
second, if the job function does not use distributed shared
memory which is mapped using an MDF. In both cases,
the job assignment is done arbitrarily. Especially for high-
speed interconnects, it is favorable to prevent nodes from
becoming idle (even if none of the work items uses
locally present data) than strictly sticking to the optimal
access patterns. For increased flexibility, we introduced
a mechanism which allows to give hints to CUDASA
about the required distributed shared memory segments
without mapping them automatically. This is convenient
for cases such as the one illustrated in the following
example: Imagine a job function accessing a large amount
of memory, which cannot be mapped as a whole, but
which will be accessed sequentially using the mapping
and unmapping functions provided by the CUDASA
runtime library. The hints and information given to
CUDASA can be used to optimize the job scheduling,
although the mapping is done manually. For this, CUD-
ASA provides the __nomap__ keyword: If a __using__
directive for MDFs is followed by __nomap__, then the
descriptor function is used during the computation of
the per-node memory overlap, but the distributed shared
memory pointer is not mapped automatically. The user
has to map and unmap the pointer using the mapping
functions in the job function as if no __using__ directive
had been specified.
CUDASA’s shared memory manager is implemented

using the MPI Remote Memory Access (RMA). It dis-
tinguishes between two classes of operations: Collective
and single-sided. Allocation and deallocation, which
may only be invoked from the head node, are collective
operations and therefore must be executed by all nodes
at the same time. For collective operations, the head node

posts a corresponding request into the event loop of all
nodes. This is necessary as we need to ensure a consis-
tent view of allocations across all nodes and this reflects
in MPI as well: All nodes accessing a memory window
need to be involved in the (de-)allocation process.
Access to existing allocations is fully single-sided on

both, the head and the compute nodes. With the coher-
ent view on the global allocation state, all nodes can
access, lock, and read from/write to distributed shared
memory (through MPI_Get and MPI_Put). We group
these operations for each memory segment (remember,
one segment resides in the local memory of one node).
Thus, an access to memory ranges spanning more than
one segment is not atomic. This could be achieved with
a two-phase locking protocol at the expense of greatly
slowing down the accesses. For the sake of speed, CUDA
does not make any guarantee regarding concurrent ac-
cesses to global memory and we decided to adopt this
for CUDASA’s shared memory manager as well.

5.2 Atomics

CUDASA also extends the concept of atomic functions
to distributed shared memory. They are implemented
using the memory window locking mechanism of MPI2.
Several preconditions for atomic functions must be met
to avoid a two-phase locking protocol for multiple seg-
ments: Firstly, atomic functions are only allowed for 32-
bit words, which must be aligned on a word boundary
within the allocation. This is a reasonable constraint
which normally also applies to atomic operations in
main memory. And secondly, each aligned word must
not span across segment boundaries. This precondition
can be easily enforced by CUDASA using a segment size
of multiple of the word length.
For most atomic functions, we can limit the commu-

nication cost to a single MPI_Accumulate call (with
the corresponding operation code) – in the worst case
an MPI_Get/MPI_Put pair within an exposure epoch
suffices.

6 DISCUSSION AND IMPLEMENTATION
DETAILS

In this section, we want to point out interesting as-
pects which deserve discussion. In particular, the newly-
introduced layers raise new questions on synchroniza-
tion, distributed shared memory, and the compile pro-
cess.
Synchronization: CUDA offers synchronization of
threads within a single block, but synchronization be-
tween blocks is not possible. This is due to the fact
that only a limited number of blocks can be executed
in parallel: Block synchronization would require the
suspension of blocks and storing of their complete state.
Only in doing so, all blocks can be executed until they
reach the synchronization barrier. Due to limited on-
board memory, this would imply a high memory transfer
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overhead and thus simply becomes impractical. Basically
the same holds for higher levels of parallelism. Although
it would be easy to provide a synchronization mecha-
nism for blocks within a taskgrid (and analogously for
jobgrids), storing the state of a single block, e.g. after the
execution of a kernel, means that potentially the total
memory of a GPU needs to be transferred to the host
and back to the GPU.
Scheduling: Especially on large clusters, which run
huge jobgrids, the sequential computation of preferred
work items may take a prohibitively long time as it
requires the MDF being evaluated for each possible job.
Therefore, we opted to implement this computation in
CUDA and run it on the GPU. The evaluation of the
descriptor function fits extremely well into the CUDA
architecture as the only input data required consists of
the base distributed memory pointers that have been
passed as actual parameters to the job. These require
a very limited amount of memory and can therefore
be stored in CUDA’s shared memory. The actual eval-
uation of the descriptor function requires only access
to shared memory and a large number of arithmetic
operations, and thus benefits from the large number
of stream processing units. Without this large degree
of parallelism, job grids of millions of entries would
be impractical. However, this implementation poses the
same restrictions on __descriptor__ functions that
are defined for CUDA __device__ functions. As long
as the required memory segments can be computed
using rather simple expressions, this does not turn out
to be a problem for the practical use of our system.
To perform the actual automatic mapping of dis-

tributed shared memory, the memory descriptor function
must be evaluated once more directly before calling a job
invocation. In this case, the descriptor is only called for
a single job index and therefore it is not advisable to use
CUDA here as setting up the environment for evaluating
a single expression introduces a high overhead. Hence,
we execute the memory descriptor function on the CPU
in this case.
Scheduling on the network layer, as described above,

does not scale optimally for very large cluster environ-
ments as the job queue is solely managed by the head
node. A large number of idle nodes asking for new
jobs simultaneously may congest the network commu-
nication with the job queue and hamper parallel jobgrid
execution. Hierarchical load balancing within a network
or the assignment of multiple jobs per query bypasses
this bottleneck. A head node can reasonably estimate the
number of blocks to be processed based on the number
of compute nodes and the size of the grid. However, this
approach has negative impact on the effectiveness of the
load balancing.
Compilation: The CUDA compile process itself intro-
duces specific preconditions on the CUDASA environ-
ment. The separation of code fragments for CPU and
GPU execution is partly based on specific comments
in CUDA headers. Hence, any pre-compiler to CUDA
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Fig. 3. Illustration of the SGEMM scaling behavior with

CUDASA for various system configurations on the bus

layer. With SGEMM, we achieve nearly optimal scaling

with the number of GPUs. The slight performance fluctua-

tions in multi-GPU configurations stem from the imperfect

load balancing (see Section 6).

is required to maintain these code lines in contrast to
the common compiler behavior of ignoring comments.
More important, it is worth to note that the current
CUDA compiler does not support exception handling.
Consequently, CUDASA requires an MPI implementa-
tion that does not use this language concept. In our
work, MVAPICH2 [8] has been used with the necessary
flags set accordingly.

7 RESULTS

For bus parallelism, we evaluate scaling behavior of
CUDASA applications on up to four GPUs in a single
machine for a variety of problem sizes. For network
parallelism, we show scalability on up to eight machines
for different applications.

7.1 Bus Parallelism

In order to compare performance and efficiency of CU-
DASA generated code to other parallel execution en-
vironments, i.e. multiple CPU cores and the intrinsic
parallelism of a single GPU, we use the single precision
general matrix multiply (SGEMM) subroutine of the
level 3 BLAS library standard. For each processor, the
vendor-specific performance-optimized implementation
is used to guarantee optimal usage of each hardware.
Namely, we use Intel’s Math Kernel Library 10.0 (MKL),
the AMD Core Math Library 4.0 (ACML), and NVIDIA’s
CUBLAS Library 1.1. The measurements on the GPU are
performed using CUDA version 1.1 for Linux (display
driver version 169.04).
Our CUDASA implementation of SGEMM uses

CUBLAS as building block for the task level. The work-
load distribution on the upper levels employs the same
block building approach as used in NVIDIA’s matrix



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,TODO: VOL., TODO: NO., TODO: MONTH 2008 10

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

G
F

lo
p

s

Number of Compute Nodes

In niBand with Mapping Declarations In niBand w/o Mapping Declarations

Gigabit Ethernet with Mapping Declarations Gigabit Ethernet w/o Mapping Declarations

Fig. 4. Illustration of the SGEMM scaling behavior using

the CUDASA network layer. The differences in the overall

performance depict the improvements of the new locality-

aware scheduler.

multiplication example [17] with increasing sub-problem
sizes.
Figure 3 summarizes the results for SGEMM bus level
parallelization (colored lines) compared with the above-
mentioned CPU implementations (gray lines). Our mea-
surements on the multi-GPU systems demonstrate excel-
lent scaling behavior for both test cases, two 8800GTX
Ultra (orange lines) and up to four 8800GT (blue lines)
cards, especially for large problem sizes. In the former
setup, we achieve a speedup of 1.95 when comparing
pure CUBLAS running on one GPU with our CUD-
ASA implementation using two cards. In the latter case,
distributing the work over all four cards results in a
speedup of 3.60. Please note that a better scaling with
the second setup is hindered by the physical PCIe lanes
of the mainboard, which offers a 16/4/4/4 layout only.

7.2 Network Parallelism

We test the network layer of CUDASA on an eight node
GPU cluster with an SDR InfiniBand interconnect. Each
node is equipped with an Intel Core2 Quad CPU, 4GB
of RAM and an NVIDIA GeForce 8800GTX GPU. The
cluster tests are performed using CUDA 1.1 and the
Linux display driver version 173.14.
SGEMM also serves as first test case for the network

layer. As with the bus level parallelism test, we use the
CUBLAS library as building block for our test program.
However, as our cluster nodes do not have multiple
GPUs, we chose to omit the task layer and let the jobs
work directly on the graphics card for this test. We run
the SGEMM test with 16, 000

2 sized matrices on two to
eight physical machines with one to eight computation
nodes. In order to carry out the same test in all cases, we
have to restrict the matrix size such that the computation
can be performed with the amount of distributed shared
memory provided by a single compute node. Note that
one of the machines serves as dedicated head node,

except for the case of eight computing nodes: Here, the
head node and one compute node are executed on the
same physical machine. This machine only contributes
a single share to the distributed memory (in its role
as a compute node). Figure 4 shows the scaling be-
havior of CUDASA’s cluster level for both InfiniBand
interconnect (blue bars) and Gigabit Ethernet (orange
bars). The diagram also highlights the impact of our new
locality-aware scheduling mechanism. Except for using
only one compute node – when minimizing of network
traffic between the compute nodes is irrelevant – using
memory descriptor functions generally performs better
than arbitrary work item assignments. Note that the
memory descriptors used for these benchmarks are very
similar to the example given in section 5.1.
We also compared the distributed memory transfer

volumes of the original memory access method (Fig-
ure 5) and the new locality-aware scheduling mecha-
nism (Figure 6). The new scheduler significantly reduces
the amount of data transferred via the network. While
being obvious that a smaller number of computation
nodes increases the probability that the required data
already resides in a local distributed memory share,
the data transfer with five compute nodes is – on first
sight – unexpectedly low (Figure 6). The explanation is
that the 16, 000

2 test matrix is subdivided into jobs of
3, 200

2 elements yielding a grid of 5 × 5 jobs. As the
distributed shared memory allocations for the matrices
are also evenly distributed to all five compute nodes, it
becomes possible to store them such that the result data
blocks for each job are exactly aligned with the allocation
segments.
Also for the general case where only “non-optimal”

scheduling is possible, the locality-aware scheduling
mechanism significantly reduces the network traffic and
consequently improves the overall system performance.
For example, for three compute nodes, the traffic is
reduced to two thirds of the original 25GB. The average
reduction (excluding the special case of one node) is
about 25 percent for the SGEMM test case.

7.3 Path Tracing

Path tracing [9] solves the rendering equation numer-
ically by effectively computing a probabilistic estimate
of the light intensity flowing to the eye point along a
light path. For this, a large number of light paths per
pixel is traced, which makes path tracing a second (and
real world) example for CUDASA’s network layer. We
implemented an iterative path tracer, which uses a uni-
form grid as acceleration structure. Geometry (triangles,
vertices, normals) and materials are handed over to the
CUDA kernels in one-dimensional textures.
The primary rays from the view point are randomly

shot through pixels and local illumination is evaluated
at intersections with the scene geometry using the Phong
model. For this, we trace a shadow ray to a randomly
chosen location on a light emitting triangle and sample
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Fig. 5. Total data transfer from and to distributed shared

memory for SGEMM on a 16, 000
2 matrix without using

memory descriptor functions. CUDASA therefore can only

assign work items arbitrarily to the compute nodes.

the bi-directional reflectance distribution function to de-
termine the reflected ray and thus the next segment of
the light path. As generating random numbers on the
GPU is costly, we store precomputed pseudo-random
numbers in a texture and copy them to shared memory
as a first step in the path tracing CUDA kernel.
The workload distribution to different jobs and kernels

takes place in image space. The job size specifies the
number of output pixel lines and the job invocation
generates a thread block to always render 64 contiguous
pixels. Each kernel thread computes one image pixel by
tracing all paths which contribute to the pixel color.
We rendered the crank data set (310,000 triangles), sur-

rounded by a box and illuminated by an area light source
on the ceiling, with our path tracer for benchmarking
(Figure 11). The surface materials exhibit varying mate-
rial properties (colors and glossiness). The uniform grid
acceleration is chosen for simplicity and obviously is
sub-optimal for such scenes: Most of the 128

3 cells are
empty, while cells enclosing finely tessellated regions
contain 900 and more triangles. All renderings have been
computed at a resolution of 1, 024×1, 024 using 150 rays
per pixel and restricting the light paths to six indirect
bounces.
Figure 7 shows the results of the scaling behavior: We

chose the number of jobs equal to the square of the num-
ber of compute nodes. By this, we generate a sufficiently
large number of jobs to observe load balancing effects.
The overall scaling behavior matches our expectations
considering the increasing number of distributed shared
memory accesses with an increasing number of jobs.
However, there are two anomalies worth mentioning: In
the case of six and eight compute nodes, the computation
takes an unexpectedly long time. This is due to the fact
that good scaling highly depends on the actual GPU
computation time being evenly distributed to the cluster
nodes. A node may have a disproportionate influence
on the overall execution time, e.g. if a node receives a
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Fig. 6. Total data transfer from and to distributed shared

memory for SGEMM on a 16, 000
2 matrix when auto-

matically mapping the result matrix and declaring access

to the other matrices in advance. The new scheduling

mechanism greatly reduces the network traffic in this

case.

computationally expensive job while the other nodes are
just finishing their last job. CUDASA’s scheduling mech-
anism has no possibility to avoid such an unfortunate
job assignment as its decisions are solely based on the
memory access specifications and not on estimations of
the computational complexity of a job. Figure 8 illustrates
this: When using six nodes, the slowest (green) node
takes nearly twice the time of all other node. For eight
nodes, this becomes even more obvious for the red node.

Increasing the number of jobs by decreasing their
size can mitigate this problem, as costly jobs are more
probably distributed across different nodes. We did not
include measurements with manually optimized job sizes
in Figure 7 as this would disguise the pure scaling
behavior of the system.
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Fig. 8. Contribution of every node to the accumulated

computation time of the path tracer. In particular when

using six and eight compute nodes the slowest node

(green, respectively red) takes much more time than the

others, which reduces the overall performance.

Of course, the accumulated execution time (Figure 8)
also depends on the amount of distributed shared mem-
ory copied for each job invocation and on degree of
data locality. Figure 9 shows that the amount of data
which has to be read remotely swiftly increases with
the number of nodes. This is due to the fact that the
complete scene has to be read for each job. However,
the influence of the distributed shared memory transfers
on the overall computation time is rather small for a
path tracer, because of the high complexity of the com-
putations. Figure 10 underlines this interpretation as it
shows the significantly reduced data transfer due to the
delayed unmapping feature of the CUDASA compiler.
As all jobs use the same scene data, the mapping of
the first job can be re-used in all consecutive ones.
Decreasing the job size to only a few thousand pixels
minimizes the load imbalance to about 1% (compared
to 30% in other configurations). However, it does not
yield the best overall performance, mainly because the
GPU power cannot be fully exploited anymore. This is in
line with the results of our SGEMM scaling tests on the
bus level (Figure 3), which show that a certain amount
of parallel work for each GPU is required for optimum
performance.
Obviously, there is a trade-off between load balancing

on the one hand, which can be achieved using more jobs,
and the increasing time required for the remote memory
accesses and decreasing GPU utilization on the other
hand. A second series of measurements was performed
to investigate the influence of different job counts using
eight nodes (Figure 10).

8 CONCLUSIONS

We introduced a new version of CUDASA, an extension
to CUDA, to achieve higher levels of parallelism. Only
few additional language elements are required, thus
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Fig. 9. Total data transfers from and to distributed shared

memory for the path tracer. The number of jobs was

chosen to be the number of compute nodes squared for

this test.

keeping the programming and learning overhead for the
user very low. We showed that this allows for tackling
computations which are too large for single-GPU CUDA-
programs and demonstrate that our system shows the
expected, and desirable, scaling behavior. The new, data
locality-aware scheduling mechanism proved to be use-
ful to increase the performance on the cluster level –
particularly for low-bandwidth networks like Gigabit
Ethernet – as long as the algorithms allow the program-
mer to specify the memory access patterns and load im-
balance is caused by distributed memory accesses rather
than by the computational load. However, especially in
the context of GPU programming, specifying the access
pattern usually does not add significant overhead, as
it normally only requires shifting the computation of
required memory ranges out of the job function into a sep-
arate descriptor function. For maximum flexibility, the
programmer can opt on a per-parameter basis whether
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Fig. 11. Final rendering result of the crank model with

150 rays per pixel and a maximum of six ray bounces.

this is possible and to which extend the system utilizes
the descriptor function. As shown exemplary for two
different test scenarios, the system performs well for
multi-GPU systems and cluster setups.

Applications using the same input data for all jobs,
such as our path tracer, could further benefit from a
concept of distributed constant memory that is filled and
copied to all nodes once before the start of the jobgrid
and remains constant over the whole grid execution.
This concept would provide more control over the data
distribution than the current automatic delayed unmap-
ping to the programmer, but remains for future work.
Furthermore, we would like to extend the scheduler
to group jobs that actually benefit from the delayed
unmapping for consecutive execution. New versions of
CUDASAmight also profit by notification events inform-
ing the user about the completion of jobs. This allows for
the implementation of more complex patterns than the
current synchronous execution of task- and jobgrids.

ACKNOWLEDGMENTS

The crank data set is courtesy of MAHLE International
GmbH, Stuttgart, and Madness GmbH, Göppingen. This
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