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ABSTRACT

We present a method for the spatio-temporal analysis of gaze data
from multiple participants in the context of a video stimulus. For
such data, an overview of the recorded patterns is important to
identify common viewing behavior (such as attentional synchrony)
and outliers. We adopt the approach of space-time cube visual-
ization, which extends the spatial dimensions of the stimulus by
time as the third dimension. Previous work mainly handled eye-
tracking data in the space-time cube as point cloud, providing no
information about the stimulus context. This paper presents a novel
visualization technique that combines gaze data, a dynamic stimu-
lus, and optical flow with volume rendering to derive an overview
of the data with contextual information. With specifically designed
transfer functions, we emphasize different data aspects, making the
visualization suitable for explorative analysis and for illustrative
support of statistical findings alike.
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1 INTRODUCTION

Gaze data recorded from multiple participants watching dynamic
stimuli, such as videos, poses a challenge for eyetracking researchers.
Complex spatio-temporal patterns that might appear in the data
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are hard to capture with statistical methods alone and often re-
quire visual support for (1) explorative data analysis, (2) displaying
statistical results, and (3) the illustration of the results.

Established visualization techniques such as gaze plots and heat
maps are limited for these purposes because they require anima-
tion to represent changing gaze patterns over time. In contrast, we
aim for a static overview of gaze data from videos that conveys
important contextual information and allows for efficient naviga-
tion in the data. To achieve this goal, we combine a space-time
cube (STC) representation of the data with techniques known from
volume rendering as it is used, for example, in medical imaging or
simulation data analysis. Applying multiple transfer functions, we
can combine data aspects for filtering and emphasizing important
regions and time spans in the data.

Our contribution is the introduction of a visualization approach
that combines multiple space-time volumes (video, optical flow,
gaze) into a spatio-temporal overview that conveys gaze patterns
as well as information on what caused these patterns. To this end,
we propose specifically designed transfer functions that can reveal
different aspects in the data. We demonstrate the applicability of
our approach on various videos with gaze data from multiple partic-
ipants, using our GPU-accelerated implementation of the system.

2 RELATED WORK

Related work for this paper is divided in a discussion of how space-
time cubes are applied in eye tracking and more generally how other
volume rendering techniques relate to this work. Eye tracking data
visualizations can be separated in techniques that represent the
point-based data directly, and the ones that include semantic infor-
mation from Areas of Interest (AOIs) [2]. The presented technique
is a point-based approach that visualizes raw gaze data. However,
we aim to bridge the gap between point-based and AOI-based tech-
niques by including stimulus content in the visualization. Hence,
the semantic interpretation what a participant investigated when,
is possible without pre-annotated AOlIs.

Space-Time Cubes. Blascheck et al. [2] list the STC as a visual-
ization for gaze data that provides spatio-temporal information
in a static overview. Different approaches have been presented in
recent years [21, 24, 26], all of them either showing gaze patterns
or AOI-related information in an abstracted overview that still re-
quired additional video skimming to identify what happened in
the stimulus when a visual pattern occurred. The STC originated
from the analysis of geo-related events [15] and is often applied
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Figure 1: Our application combines: (A) the main view with the space-time cube visualization, (B) a transfer function editor
for filtering and coloring that also shows data histograms, (C) an editor to adjust clipping planes, and (D) The visualization of

selected frames as annotation that also shows the gaze heatmap.

for the analysis of trajectories [14], similar to scanpaths in eye
tracking. For 2D temporal field data, Frey et al. [13] proposed a
visualization technique to help detect temporal patterns such as
periodic changes or constant regions in the data. Other approaches
for video-based graphics and video visualization [3] work with the
video data directly to represent what is happening: Chen et al. [7]
extract and visualize motion patterns from surveillance videos in
an STC based on optical flow. A similar approach by Romero et
al. [29], relies on heat map volumes to depict motion patterns in
long-term recordings. These approaches do not depict the origi-
nal video content in the resulting volume. Nguyen et al. [27] also
use motion information to remove non-moving pixels and apply
a slice-based representation of the parts of the video in motion.
Hilpoltsteiner [16] introduced the idea of using gaze positions to
reduce the depicted content in image slices inside the STC. How-
ever, the concept does not include the application of combined
transfer functions for multiple data properties. To this point, a
holistic approach supporting the visualization of the different data
sources together is missing. With our approach, we bridge this gap
between the analysis of gaze distributions and their interpretation
by inspecting the video.

Volume Rendering. Traditional application domains of volume
rendering techniques [8, 17] include medical imaging (analysis
of computed tomography scans or magnetic resonance imaging),
visual arts as in computer-generated imagery, and visualization
of scientific simulation data (e.g., from astrophysics or material
sciences). Since the advent of flexibly programmable graphics hard-
ware, GPU raycasting has established itself as the standard for

performing realtime direct volume rendering in workstation en-
vironments [9, 28, 31]. Volume raycasting has several advantages
compared to rasterization, especially in the context of this work. It
offers high quality and versatility in that all samples taken along the
rays can be adjusted as desired and no ordering has to be applied
to graphical elements. As it is often computationally expensive,
enhancing performance via different approaches is an active field
of research [1, 5].

The visualization of temporal data is also an active field of re-
search in volume visualization. Similar to the STC approach pro-
posed in this paper that needs to be able to present multiple 3D fields,
in these areas different forms of data reduction need to be employed
to reduce overdraw and visual clutter. Woodring et al. [32] combine
data from multiple fields into single values by using extended inter-
action modalities from standard volume rendering. This approach is
conceptually similar from the perspective that we also rely on mod-
ified variants of standard volume exploration techniques. Another
reduction approach is based on quantifying distances between time
points and on this basis selecting single time steps to present to the
user [11, 12], or extracting certain features like space-time discon-
tinuities [10].Beyond classical applications of volume visualization
for spatial field data, the advantages of volume rendering have also
been exploited for visual analysis of large dynamic graph data [6].

3 TECHNIQUE

To explain our approach for combined analysis of gaze and stimu-
lus data, we first discuss the visual design, followed by three core
aspects that are depicted in Figure 2: (1) data pre-processing, (2) vol-
ume rendering, and (3) interactive data exploration.
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Figure 2: The stimulus video and the recorded gaze data from multiple participants is processed to derive three volumes con-
taining spatio-temporal information of the data. Rendering is performed with a multi-field approach, combining the volumes.
Interactive data exploration is supported via transfer functions, clipping planes, and annotations for the temporal dimension.

Dense
combination

+ >' &0. @ OOOx
e Slice-based I

é combination
Gaze data ,

Figure 3: Example renderings of our data input (gaze density
and video frames) as volumes and a combination thereof.
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3.1 Visual Design

Figure 1 shows an overview of our system. It features the main view
with the STC visualization (A), controls for filtering and highlight-
ing parts of the data (B, C), and the possibility to annotate important
frames (D). The two data sources for our visualization are video
frames and gaze positions from multiple participants. Each data
source can be investigated separately in the STC as depicted in
Figure 3. The raw video volume provides an overview of motion
at frame borders. This corresponds to slit-scan visualizations that
are used to summarize a video [18]. However, important content
inside the volume is occluded. Figure 3 also shows the aggregated
gaze data rendered as an STC. While this visualization gives a good
overview on the gaze distribution, there is no direct link to the
video content. To make this connection visible, a combination of
the two data sources is necessary. As shown in Figure 3 such a
combination can be represented as a dense volume or slices, to
reduce occlusion and reveal more details.

To support effective analysis of the combined data sources, pre-
processing is required to transfer the data into a unified multi-field
volume (Section 3.2). To render the volume interactively, we use
GPU-accelerated raycasting (Section 3.3). For appropriate repre-
sentation of important gaze patterns, we support interactive data

exploration. Thereby, a key aspect is the manipulation of transfer
functions to change the visualization based on different aspects in
the data (Section 3.4).

3.2 Data Pre-Processing

To yield real-time rendering performance for interactive analysis,
we convert the data into dense volumes in a pre-processing step.

Video Volumes. A video volume contains all visual information
of the stimulus, and interaction methods from volume visualization
can be employed. (1) The spatial plane depicts the video frames.
Clipping the volume along the time axis emulates a video replay.
(2) The side planes of the volume represent slit-scans of the video.
Adjusting the clipping for these planes provides the corresponding
slit-scan that can show important regions and events of the video.

The investigated stimuli consist of n frames, often in typical
multimedia resolutions, e.g., 1920 X 1080 pixels. Including the tem-
poral dimension in the data significantly increases the amount of
memory necessary to hold such data. Hence, a reduction of the vi-
sualized data becomes necessary. For the representation of the data
as a volume, the temporal resolution is more important because it
allows depicting longer sequences, while the spatial resolution can
be reduced without drastically changing the overview of the data
set. However, with a width of only 100 pixels, the image content
becomes blurry and details can be missed. Hence, we found that
processing the videos for all frames with a width between 200-400
pixels and a height adjusted with respect to the aspect ratio of the
video provides smaller volumes with enough details to interpret the
stimulus. Furthermore, the ratio between the spatial and the tem-
poral resolution increases with lower spatial resolutions, leading
to elongated, less compact STCs, which might require additional
scaling of the temporal axis for a better overview. The data is stored
as RGBA unsigned characters in raw data files. This format is com-
patible with most applications for volume rendering. Note that the
alpha channel in this format could be used to also store the gaze
volume at the cost of precision.

Optical Flow. The optical flow for a video sequence describes
how individual pixels move between two consecutive frames. We
apply a variational method [4] that provides a dense vector field
of absolute displacement for image pairs in the video sequence.
For a more intuitive interpretation, the values are converted to
angle and magnitude of the vectors. For filtering of motion regions,
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Table 1: Three volumes are derived from the video and gaze
data. They are combined in a subsequent rendering step.

Volume Format Channels Content

Video UCHAR 4 RGBA values of the video
frames

Optical ~ FLOAT 2 Angle & magnitude of the dis-

Flow placement vector field

Gaze FLOAT 1 Gaze density based on kernel

density estimation

pixel-precise accuracy of the flow is less important, hence, a trade-
off between flow precision and computational performance can be
made by reducing the number of iterations for the applied approach.
We store the angle and magnitude as single precision floats in
two channels. The normalization factor of the magnitude can be
dynamically adjusted during runtime according to the needs of the
analyst and specifics of the data.

Gaze Volumes. Heat maps are a common visualization to repre-
sent aggregated gaze data. The aggregation is calculated over time
and/or for multiple participants. For dynamic stimuli, it is neces-
sary to provide a dynamic heat map that conveys the changes of
gaze patterns over time. To achieve this, we apply a sliding window
approach that respects temporal coherence by summarizing gaze
points from the current frame and m € N previous frames. For
the heat map calculation, we apply an Epanechnikov kernel [30]
for an efficient approximation of a Gaussian kernel. The kernel
covers 10% of the frame height, which roughly corresponds to the
foveal area that was covered at a distance of 65 cm showing the
videos with a resolution of 1920 X 1080 pixels. As with the optical
flow, the applied techniques are interchangeable according to the
requirements for precision and performance. The data is stored as
single-precision floats without normalization. Again, the normaliza-
tion of the data can be adjusted in the rendering process, allowing
the analyst to change the heat map dynamically, depending on the
current research question. Table 1 summarizes the data volumes
and how they are stored for volume rendering.

3.3 Volume Rendering

We apply multi-field volume rendering to depict the three spatio-
temporal volumes. To enable interactive exploration of the data,
even when rendering large sequences with several thousand frames,
we accelerate the compute-heavy calculations by using parallel pro-
cessing on GPUs. For this, we use the OpenCL framework that
allows for cross-platform execution and device portability. We also
take advantage of texture units integrated in GPUs for their interpo-
lation capabilities. Therefore, we process the video volume, optical
flow, and gaze data as a 3D texture each.

Ray Casting. We implement direct volume rendering by using
front-to-back raycasting. Therefore, we shoot rays through each
pixel of the image plane toward the volume, sampling the volume
elements (voxels) along the rays in equidistant intervals. For correct
compositing and better performance, we sample all values (video,
flow, gaze) at the same time. We use early ray termination and
empty space skipping to accelerate the computations.

Bruder et al.
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Figure 4: Clipping planes for exploration of volume slices.

Multi-Field Rendering. In case of the video data, the sampled RGB
colors are directly used to determine the color of the pixel. Density
and optical flow data (angle and magnitude) are interpreted as three
distinct scalar fields. The samples from these fields are evaluated
using transfer functions. Being a fundamental concept in volume
rendering, transfer functions map scalar values (which are sampled
from the scalar field during raycasting) to color and/or opacity val-
ues. Thereby, mapped color and opacity are composed into the final
pixel value. We support three transfer functions, one for color and
opacity values and two for transparency only. If multiple transfer
functions are employed at the same time, the opacity values are
composited into one final opacity value. The sequence in which the
functions are applied to the data (and if at all) can be dynamically
adjusted by the analyst.

Slice-Based Video Context. The dense nature of the data makes
it hard to make out the content of single frames, especially if lit-
tle transparency is used in the mappings. To provide a meaning-
ful visual representation nevertheless, we support rendering only
selected frames in a regular interval, which can be dynamically
adjusted. In Figure 1 for instance, a stride of 15 is used to show only
data of 42 frames out of more than 620, which makes it possible to
see most parts of the content for the rendered frames.

3.4 Interactive Data Exploration

The presented multi-field approach allows us to filter specific parts
of the data and to emphasize regions in the STC that are relevant
for the research question at hand. For example, one could only
be interested to see when participants looked at moving objects.
Combining the three presented data properties, such a query can be
modeled by combining transfer functions. Furthermore, the appli-
cation of clipping planes and timeline annotations provides means
to explore the data and create supportive illustrations. Basic inter-
actions along the temporal domain are supported such as scaling
the data along the time-axis and showing only every n-th frame.

Clipping Planes. Clipping of the volume can be performed in-
dividually for each dimension (Figure 4). If clipped along the z-
axis, the volume depicts how the video content changes over time,
i.e., this corresponds to a playback of the video (Figures 5a-5c). If
clipped along the x- or y-axis, the volume depicts individual slit-
scans [18, 23] that summarize all motion over time at the clipping
border, which acts as a scanline. This helps identify when an object
appeared in the video (Figure 5d) or how it moved (Figure 5e).
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(c) Front view: 57

(d) Side view: vertical plane clipping

(e) Top view: horizontal plane clipping

Figure 5: Volume Clipping along the three dimensions. (a)-(c) Temporal clipping emulates a playback of the video. (d) Clipping
the volume with a vertical plane results in slit-scans that depict objects whenever they moved through the scene. (¢) Similarly,

clipping with a horizontal plane reveals motion patterns.

Transfer Functions. Transfer functions determine the visual map-
ping of voxels to values such as color and opacity. A common
approach to transfer function design is to select value ranges and
their corresponding opacity based on a 2D histogram. For example,
values that correspond to the hue of the sky in a video volume
could be set to full transparency to remove one important area
that often occludes important details in the volume. This corre-
sponds to chroma keying techniques known from visual effects
in video production. More general, the flow contains information
that helps filter the data further. The histogram of the magnitude is
helpful to remove areas with no motion, as with the example for
the hue, regions such as the static sky can be masked out this way.
Furthermore, general camera panning motion can be removed by
appropriate filter settings (Figure 6b). Filtering the gaze data by its
density allows us to highlight hotspots of attentional synchrony
where the gaze density is high (Figure 6a). Regions with lower
density values can also be emphasized, which is usually the case if
multiple regions attracted attention, or if the gaze data is dispersed.

Annotations. Filtering the volume with appropriate transfer func-
tions provides a better overview of the data set because of the
local stimulus context, compared to visualizations without stimu-
lus information. However, for the illustration of results, the global
context, i.e., the whole video frame and the corresponding heat
map are beneficial. Hence, we adapt the idea of annotations for
narratives of historical events in the STC [19]. Kraak and Kveladze
annotate events in a geo-spatial context by pictorial labels to sum-
marize important events. We support such an interactive labeling
of individual time steps by individually adjustable video frames.
Therefore, the analyst can simply click on a frame to select in the
space-time-cube directly. This invokes the generation of a hovering
window containing the frame with a colored border that matches
an also generated marker on the sides of the volumetric view that
highlights annotated frames (Figure 1D). In future work, we want

Table 2: Example videos with gaze data used in this paper.

Video Duration Depicted in figure

Car Pursuit 0:25 min 1,3,5,6, 10
Kite 1:37 min 7

Thimblerig ~ 0:30 min 8

UNO game  2:01 min 9

to add automated placement of the annotations and improve the
visualization of the connections to the space-time view.

4 EXAMPLES

We apply our technique to different videos from a publicly avail-
able data set [20]. The videos with gaze data and the respective
figures they are depicted in, are summarized in Table 2. All data
was recorded in a user study with 25 participants using a Tobii
Pro T60 XL with a stimulus resolution of 1920 X 1080 pixels. The
Car Pursuit video has been shown in the previous sections to illus-
trate concepts of our technique. It depicts a red car driving from
the left side of the screen to the right and back. The video contains
two horizontal panning motions at the beginning and the end to
adjust the field of view. Participants were asked to follow the car,
leading to smooth pursuits and attentional synchrony [25].

4.1 Kite

An example of our technique is depicted in Figure 7. In the video
sequence a person steers a yellow kite which the participants were
ased to follow. The kite leaves the recorded field of view several
times during the sequence. Filtering out low gaze density from
the video with the transfer function directly reveals patterns and
outliers, thereby giving a good overview (Figure 7a). Mostly, partic-
ipants smoothly follow the path of the kite if it is visible. However,
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(a) Volume filtered and colored according

to the gaze density magnitude

to the transfer function for flow vector

(c) Volume filtered and colored according
to the angle of the optical flow vectors

Figure 6: Different transfer functions for optical flow and gaze density applied to the same data set. Two camera pans and the
moving car are clearly visible in the flow data, the gaze data shows that participants follow the car’s movement accurately.
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(b) Video data with slow motion filtered out. Small camera pans are
visible (not filtered out).

Figure 7: Rendering showing a video of a person steering a yellow Kkite. Filtering based on gaze as well as flow are applied to

highlight different aspects.

if it leaves the field of view, some participants try to estimate the
path outside the view and predict the spot where the kite reenters
into the video. Other participants focus on the person steering the
kite on the meadow. Figure 7b shows a rendering of the video while
using our technique to filter based on the magnitude of the flow
vectors (i.e., filtering out low magnitude). This rendering also re-
veals the path of the kite but also highlights the sections where the
kite leaves the field of view. Slight camera pans in the data appear
as fully visible frame slices but could be filtered out using another
pre-processing step. This rendering also shows that the person on
the ground is hardly moving (only slight indications) making it hard
to identify the person as a potential AOI solely based on motion
information. This example shows that using both, flow and gaze
data for filtering has a clear advantage to visually identify AOIs.

4.2 Thimblerig

In our second example, we apply our technique to a video showing
a hat game (thimblerig). The participants were asked to follow
one of three hats that hides a marble underneath while they are

being shuffled. Figure 8 shows renderings of the video data, which
contains 749 frames, with different configurations. Looking only at
the video data without any filtering applied (Figure 8a), the shuffling
pattern is roughly visible.

Filtering out regions with low flow magnitude yields a concise
overview of the shuffling patterns. The patterns can be enhanced
using our slice-based video context view that regularly skips sev-
eral frames as described in Section 3.3 (Figure 8b). Alternatively,
we can also filter out regions with low gaze density (Figure 8c).
This reveals that most participants followed a single hat—the one
hiding the marble. Investigating the frames before the hat with the
marble is lifted reveals that most participants were successful in
following the hidden object. Comparing the two renderings with
gaze respective motion filtered out, it becomes clearly visible that
the gaze is directed by motion.

4.3 UNO Card Game

In this example, we apply our technique to a video of two people
playing the UNO card game. During each player’s turn, participants
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(a) Video with shuffling pattern

(b) Frames with low motion filtered out
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(c) Frames with low gaze density filtered out

Figure 8: Video showing a hat game without and with filtering applied for different properties. Participants are tasked to

follow the hat hiding a marble.

were asked to focus on playable cards in the hands of the players.
Filtering the video data by omitting regions with low gaze provides
a good overview of the major patterns (cf. Figure 9a). For instance,
it is clearly visible when the majority of the participants looked
either at the cards of the right or the left player. Typically, atten-
tion on one of the players is followed by gaze on the discard pile,
then on the opposing player. This seems to be the main pattern
in the gaze data. Participants follow the card, a player puts on the
discard pile, and then looks at the other player to anticipate the
next move. Visualizing the gaze data in the STC also reveals four
time spans where the participants focus on the draw stack. Further
investigation shows that all of these are related to events where
players have to draw new cards. This can be visualized by filtering
out regions with little motion (Figure 9b). Using this filtering, one
can determine which player had to draw cards and even how many.

A close comparison of flow magnitude filtering that shows only
parts with large motion and filtering with respect to high gaze
density reveals aspects of interest. For instance, after the player
on the right hand side plays the red card 1, the opponent cannot
play a valid card and is forced to draw from the stack. Figure 9a
shows that participants who watch the video react to this event
differently. Some anticipate the draw as the next action, which is
visible in the gaze visualization in that it shows attention on the
draw stack before the motion of the hand begins, as can be seen in
the flow visualization. However, most of the participants seem to
follow the motion of the hand to the draw stack. This indicates that
a few participants followed the game attentively and are able to
anticipate the next move correctly before it happens. The attention
of the other participants who follow the hand movement could be
drawn by the motion because they did not follow the game carefully.
This could be due to the fact that they are not paying full attention
or are not fully aware of the rules.

Our approach is also well suited to support statistical measures
with illustrations. As an example, one can calculate the mean dis-
tance of gaze positions relative to the centroid over time, which
is an indicator for attentional synchrony if values are low [22].
The stimulus context is not directly available if the mean distance
alone is used. However, such a measure can be applied to segment
respective time spans. With our STC approach, we complement
the measure to directly depict what happend in the stimulus that

caused the changes in the values. As an example, Figure 9 shows
such a gaze distribution plot for a range around the selected frames.

5 DISCUSSION

Utility. The examples in Section 4 demonstrate the usefulness of
our approach especially for gaining a combined overview of video,
gaze, and flow data. In the first example, investigating the Kite
video, our volume STC rendering applied with a gaze filter yields a
concise overview of the participants’ gaze distribution across the
whole video. For example, the analyst can directly see how par-
ticipants follow the kite, and that their focus shifts to the person
steering the kite when it leaves the field of view. Furthermore, it
is possible to make out details in our visualization that would be
obscured by a traditional heat map. Starting at the overview, the
analyst can easily pick single frames for further investigation or
compare the gaze to the optical flow vectors, e.g., movement patters
as also demonstrated in the second example (Thimblerig). The flow
data also contains camera pans that clutter the visualizations of
some of the videos (Car Pursuit and Kite). However, they could be
automatically detected and removed with further pre-processing,
which remains subject for future work. The UNO card game exam-
ple in particular demonstrates how much detail can be shown in
our STC visualization. A combination of filtering with gaze and
flow data reveals major game moves as well as gaze patterns.

Filtering out specific angle ranges of the optical flow vector field
did not reveal prominent patterns in the examples shown. However,
we anticipate that this could be useful for analyzing other data sets,
especially in combination with the filtering based on the magnitude
of flow vectors. For instance, it could be used to filter for objects
moving only in a certain direction such as a person walking from
left to right while others move from right to left.

Comparison to Point Cloud Rendering. Our approach presents
gaze patterns in an overview enriched with context from the visual
stimulus. There are some advantages of this approach in comparison
to point cloud rendering, a current state-of-the-art technique [21]
(Figure 10). We evaluate both techniques based on three aspects an
STC visualization for gaze data should be able to provide: (1) an
overview of common patterns, (2) the detection of outliers, and (3)
information about the stimulus context.
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Figure 9: Two people playing the UNO card game visualized with our technique showing gaze and flow magnitude. The plot
shows the mean distance of the gaze to the centroid for a selected time range. Selected frames are marked as vertical lines.

Figure 10: Point cloud rendering of gaze data based on the
technique by Kurzhals et al. [21].

In the overview, spatio-temporal patterns are clearly visible in
both visualization techniques. The comparison between the point
cloud and the volume is analogous to their 2D counterparts, the bee
swarm and the heat map. The point cloud represents the data as it
was recorded, including noise that might result from missing eye
detection or an inaccuracy of the device. The aggregated volume
displays the data temporally and spatially smoothed. Hence, noise
is reduced and the analyst can focus on hot spots. Depending on
the analysis task, the overview should enable an analyst to identify
outlier behavior. For this task, the point cloud and the possibility to
show scan paths by space-time trajectories is better suited than the
volume. For temporal outliers, e.g., time spans of highly dispersive
gaze distributions, the volume provides means to identify them
efficiently. Kurzhals et al. [21] included a video plane in the STC
that moves along the time axis. This approach provides context
only through video skimming by adjusting a slider to a time step of
interest. We incorporated this approach for annotation purposes,

but with additional volume data from the video, it is possible to
depict stimulus context in the overview without skimming.

In summary, a volume-based STC visualization of gaze and video
data provides means for an overview of common spatio-temporal
patterns in the data. In contrast to point clouds, it preserves the
stimulus context and is therefore more suitable for efficient data
exploration and the illustration of the results. To compensate for
the search for outliers, a hybrid approach combining volume and
gaze trajectories might be helpful.

6 CONCLUSION AND FUTURE WORK

We presented an approach to visualize gaze data from participants
watching video. It shows the data as a space-time volume with
multiple fields, and with this provides an overview of the stimulus
context and how it relates to occurring gaze patterns. This helps an
analyst identify important time spans without having to replay the
whole video stimulus. The volume can further be explored flexibly
and interactively via different transfer functions.

For future work, we plan to incorporate different approaches
to facilitate the adjustment of transfer functions. Common presets
for the identification of attentional synchrony, smooth pursuit of
objects, or areas with high dispersion could help support common
analysis tasks in eye tracking research. Furthermore, it is possible to
convert additional information into spatio-temporal volumes. For
example, pixel-precise AOI labels could be included by a numerical
coding scheme. This would allow us to display only relevant regions
when a specific AOI was visible.
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