
Power Efficiency of Volume Raycasting on Mobile Devices

M. Heinemann, V. Bruder, S. Frey, and T. Ertl

University of Stuttgart, Germany

(a) Datasets (b) mobile hardware test setup and app

0.0 0.2 0.4 0.6 0.8 1.0

utilizationCL

0

10

20

30

40

50

60

E
n
e
rg

y
 (

J 
/ 

6
0

s)

Dataset

Bucky Ball

Bonsai

Engine

(c) energy consumption w.r.t. dataset

0 10 20 30 40 50

Energy OpenCL (J / 60s)
0

5

10

15

20

25

30

35

40

E
n
e
rg

y
 O

p
e
n
G

L 
(J

 /
 6

0
s)

(d) OpenCL vs. OpenGL

Figure 1: Raycasting volume datasets (a) on a mobile system (b) shows a direct correlation between the GPU utilization and the energy
consumption for different parameter configurations (c). However, depending on the dataset, there is a different trend noticable (c). Furthermore,
an increased energy consumption can be measured when using the OpenCL API compared to OpenGL (d).

Abstract
Power efficiency is one of the most important factors for the development of compute-intensive applications in the mobile domain.
In this work, we evaluate and discuss the power consumption of a direct volume rendering app based on raycasting on a mobile
system. For this, we investigate the influence of a broad set of algorithmic parameters, which are relevant for performance and
rendering quality, on the energy usage of the system. Additionally, we compare an OpenCL implementation to a variant using
OpenGL. By means of a variety of examples, we demonstrate that numerous factors can have a significant impact on power
consumption. In particular, we also discuss the underlying reasons for the respective effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing
algorithms

1. Introduction and related work

Mobile devices such as smartphones have gained much popularity
over the last decade, contributing to a significant advancement of
their hardware over the years. Latest systems-on-a-chip (SoC) en-
able complex rendering applications on such mobile devices, by
providing decent computing power through integrated GPUs that
support modern APIs such as OpenCL or OpenGL. However, run-
ning compute intensive tasks, such as rendering 3D objects over a
longer period of time, is often limited by battery capacity. Therefore,
the understanding of the factors that influence energy consumption
plays an important role for these applications, because optimizations
in this regard can reduce power consumption and ultimately lead to
a longer runtime of the respective mobile device. In this work, we
investigate the power consumption of a mobile direct volume render-
ing application. In doing this, we focus on analyzing the influence of
different rendering parameters, such as frames per second (FPS), res-
olution, or dataset, on the energy consumption of the whole system.

Furthermore, we examine the difference in using the OpenCL com-
puting API compared to the OpenGL rendering pipeline with respect
to power efficiency. In previous work, Johnsson et al. [JGDAM12]
analyze the energy consumption of multiple rendering algorithms on
different GPUs, including desktop hardware and mobile platforms.
They found out that power consumption varies significantly over dif-
ferent architectures and is not directly proportional to computation
speed. While we focus on volume racyasting in our work, Johnsson
et al. analyze algorithms for the classic rendering pipeline, such as
shadow algorithms. Similarly, Mochocki et al. [MLC06] discuss and
optimize the power consumption of the mobile rendering pipeline
by looking at the influence of various parameters such as frame
rate, resolution, level-of-detail, lightning, and texture model. For
non-rendering applications, Aragon et al. [AJM∗14] compare the
power consumption of algorithms running on CPU against GPU
implementations. Collange et al. [CDT09] and Ma et al. [MDZD09]
discuss the GPU power consumption for desktop GPUs.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Eurographics Conference on Visualization (EuroVis), Posters Track (2017)
A. Puig Puig and T. Isenberg (Editors)

DOI: 10.2312/eurp.20171166

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurp.20171166


Moritz Heinemann, Valentin Bruder, Steffen Frey & Thomas Ertl / Power Efficiency of Volume Raycasting on Mobile Devices

0.0 0.2 0.4 0.6 0.8 1.0

utilizationdraw

0

10

20

30

40

50

E
n
e
rg

y
 (

J 
/ 

6
0

s)

Dataset

Bucky Ball Bonsai Engine

FPS

variable 15 30 45 60

Figure 2: Power consumption w.r.t. utilization, measuring draw-to-
screen (OpenGL) in addition to bare frame computation (OpenCL),
i.e. same data as in Fig. 1c but including draw-to-screen overhead.

2. Methods and implementation

As a basis for our measurements, we use the Intrinsyc Open-Q 820
Development Kit [Int] running Android 6.0 in combination with
an ARM Energy Probe [ARMa] (Fig. 1). This setup allows us to
measure the overall power consumption of the system’s core compo-
nents: a Qualcomm Snapdragon 820 SoC (including an Adreno 530
GPU), memory, and communication hardware. We implemented
a standard volume raycasting algorithm in an Android app using
front-to-back compositing and early ray termination. For the sake
of comparison, we implemented two backends for our raycasting
loop, (1) using an OpenCL 1.2 compute framework kernel and (2)
using an OpenGL fragment shader and the rendering pipeline. The
app can receive parameters via the Android Debug Interface and
start the render view with a pre-selected parameter set. The energy
usage is recorded with ARM Streamline [ARMb]. The ratio of the
time that the GPU is actively working has a strong impact on power
consumption, and we denote it as utilization in the following. It is
defined as sum of frame execution times of all measured frames in
the sequence, divided by the total measurement time. We use the sys-
tem’s sleep function to achieve target frame rates and to circumvent
the v-sync of Android. We employ two different methods to mea-
sure frame times (which accordingly has an impact on utilization):
utilizationCL measures the kernel execution time, and is limited to
the OpenCL implementation (e.g., Fig. 1c); utilizationdraw measures
one pass through the rendering loop, i.e. incorporating the OpenGL
part and all overhead (e.g., Fig. 2).

3. Results and discussion

We ran multiple tests with different sets of parameters, including
various viewport resolutions, frame rates, raycasting step sizes and
datasets. Additionally, we ran each parameter combination with an
interaction script (sequence of recorded user interactions, including
rotation and zoom) as well as a constant view. All combinations
resulted in a total of 450 test cases. In the case of variable frame rates,
we only render a new frame, when the recorded user interaction
changes the camera view. Renderings of the datasets are shown in
Fig. 1a (Bonsai, Engine) and b (Bucky Ball). We evaluate all cases
with our OpenCL as well as the OpenGL implementation.

OpenCL implementation. Fig. 2 shows the total energy con-

sumption with respect to utilization (including drawing to screen
overhead) for all configurations colored by FPS target. All data
points are based on a 60s measurement period. The plot shows a
roughly linear correlation between activity and power consumption.
Measurements with almost zero activity are from cases with variable
frame rates and constant view, meaning that only one frame is ren-
dered during the whole time. There is an observable drifting-apart
of the data points with increasing activity and a noticeable cluster of
60 FPS measurements at an activity of around 60%. There are a few
outliers that do not seem to have a patter in terms of a specific param-
eter configuration and are probably caused by background tasks. To
further investigate the observed cluster, we use the OpenCL kernel
runtime based utilizationCL, which is shown in Fig. 1c. As can be
seen, the cluster is non-existent using this measurement method.
Accordingly, the source of this is likely to be found in displaying the
rendering result with OpenGL (in detail, we assume that this is due
to the context sharing of the two APIs and/or the system managed
v-sync). Fig. 1c and the form-encoding in Fig. 2 show the reason for
the drifting apart of the measurements for higher activity. Here, we
can observe a clear linear trend for each dataset, which we attribute
to cache coherency that is typically influenced by volume resolution
and early ray termination. All other investigated parameters do not
show special patterns in our utilization to power consumption dia-
gram, leading us to the assumption that they only influence frame
execution times and not the power consumption directly.

OpenCL vs. OpenGL. We compared our OpenCL implemen-
tation with an OpenGL version using fragment shaders. For the
OpenGL variant, we could not determine exact frame execution
times comparable to OpenCL kernel times. Therefore, we used
utliziationdraw as the basis for comparison (Fig. 1d). The plot shows
the relation of OpenCL to OpenGL power consumption, with each
data-point representing a parameter configuration. Linear regression
yields the result that the OpenGL version uses around 25% less en-
ergy than the OpenCL version. The only correlation we found w.r.t.
different parameter combinations is the case with variable frame
times and a constant view that has almost no difference between
OpenCL and OpenGL (only one frame is drawn). A qualitative
analysis of the data showed no sign of the OpenGL version running
particularly faster than OpenCL. However, we could not determine
the exact frame execution times for the OpenGL variant and there-
fore can only assume that the increased energy usage when using
OpenCL is due to the introduced overhead of using both APIs and/or
inferior optimization for our mobile platform (because of the lack
of OpenCL integration into the Android SDK).

Conclusion. Various parameter setups influence the energy con-
sumption during volume rendering mainly through influencing com-
putation time. However, different datasets show a distinctive linear
trend in power consumption. Reducing computational time and lim-
iting the FPS seems to reduce energy consumption consistently for
the examined application, as is using OpenGL instead of OpenCL.

Acknowledgments

The authors would like to thank the German Research Foun-
dation (DFG) for supporting the project within project A02 of
SFB/Transregio 161 and the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

50



Moritz Heinemann, Valentin Bruder, Steffen Frey & Thomas Ertl / Power Efficiency of Volume Raycasting on Mobile Devices

References
[AJM∗14] ARAGON E., JIMÉNEZ J. M., MAGHAZEH A., RASMUSSON

J., BORDOLOI U. D.: Pattern matching in opencl: Gpu vs cpu energy
consumption on two mobile chipsets. In Proceedings of the International
Workshop on OpenCL 2013 &#38; 2014 (New York, NY, USA, 2014),
IWOCL ’14, ACM, pp. 5:1–5:7. URL: http://doi.acm.org/10.
1145/2664666.2664671, doi:10.1145/2664666.2664671.
1

[ARMa] ARM: ARM Energy Probe. URL: https://developer.
arm.com/products/software-development-tools/
ds-5-development-studio/streamline/
arm-energy-probe. 2

[ARMb] ARM: ARM Streamline. URL: https://developer.
arm.com/products/software-development-tools/
ds-5-development-studio/streamline. 2

[CDT09] COLLANGE S., DEFOUR D., TISSERAND A.: Power
Consumption of GPUs from a Software Perspective. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 914–923. URL:
http://dx.doi.org/10.1007/978-3-642-01970-8_92,
doi:10.1007/978-3-642-01970-8_92. 1

[Int] INTRINSYC: Open-Q 820 Development
Kit. URL: https://www.intrinsyc.com/
snapdragon-embedded-development-kits/
snapdragon-820-development-kit/. 2

[JGDAM12] JOHNSSON B., GANESTAM P., DOGGETT M., AKENINE-
MÖLLER T.: Power efficiency for software algorithms running on graph-
ics processors. In Proceedings of the Fourth ACM SIGGRAPH / Eu-
rographics Conference on High-Performance Graphics (Aire-la-Ville,
Switzerland, Switzerland, 2012), EGGH-HPG’12, Eurographics Asso-
ciation, pp. 67–75. URL: http://dx.doi.org/10.2312/EGGH/
HPG12/067-075, doi:10.2312/EGGH/HPG12/067-075. 1

[MDZD09] MA X., DONG M., ZHONG L., DENG Z.: Statistical power
consumption analysis and modeling for gpu-based computing. In Proceed-
ing of ACM SOSP Workshop on Power Aware Computing and Systems
(HotPower) (2009). 1

[MLC06] MOCHOCKI B., LAHIRI K., CADAMBI S.: Power analysis
of mobile 3d graphics. In Proceedings of the Conference on Design,
Automation and Test in Europe: Proceedings (3001 Leuven, Belgium,
Belgium, 2006), DATE ’06, European Design and Automation Associa-
tion, pp. 502–507. URL: http://dl.acm.org/citation.cfm?
id=1131481.1131617. 1

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

51

http://doi.acm.org/10.1145/2664666.2664671
http://doi.acm.org/10.1145/2664666.2664671
http://dx.doi.org/10.1145/2664666.2664671
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline
http://dx.doi.org/10.1007/978-3-642-01970-8_92
http://dx.doi.org/10.1007/978-3-642-01970-8_92
https://www.intrinsyc.com/snapdragon-embedded-development-kits/snapdragon-820-development-kit/
https://www.intrinsyc.com/snapdragon-embedded-development-kits/snapdragon-820-development-kit/
https://www.intrinsyc.com/snapdragon-embedded-development-kits/snapdragon-820-development-kit/
http://dx.doi.org/10.2312/EGGH/HPG12/067-075
http://dx.doi.org/10.2312/EGGH/HPG12/067-075
http://dx.doi.org/10.2312/EGGH/HPG12/067-075
http://dl.acm.org/citation.cfm?id=1131481.1131617
http://dl.acm.org/citation.cfm?id=1131481.1131617

