
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Interactive High-Quality Visualization of

Higher-Order Finite Elements

Markus Üffinger, Steffen Frey and Thomas Ertl

Visualization Research Center Universität Stuttgart (VISUS), Germany

Abstract

Higher-order finite element methods have emerged as an important discretization scheme for simulation. They
are increasingly used in contemporary numerical solvers, generating a new class of data that must be analyzed
by scientists and engineers. Currently available visualization tools for this type of data are either batch oriented
or limited to certain cell types and polynomial degrees. Other approaches approximate higher-order data by re-
sampling resulting in trade-offs in interactivity and quality. To overcome these limitations, we have developed
a distributed visualization system which allows for interactive exploration of non-conforming unstructured grids,
resulting from space-time discontinuous Galerkin simulations, in which each cell has its own higher-order polyno-
mial solution. Our system employs GPU-based raycasting for direct volume rendering of complex grids which fea-
ture non-convex, curvilinear cells with varying polynomial degree. Frequency-based adaptive sampling accounts
for the high variations along rays. For distribution across a GPU cluster, the initial object-space partitioning is
determined by cell characteristics like the polynomial degree and is adapted at runtime by a load balancing mech-
anism. The performance and utility of our system is evaluated for different aeroacoustic simulations involving the
propagation of shock fronts.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation—Viewing algorithms, Computer Graphics [I.3.2]: Graphics Systems—Distributed/network graphics

1. Introduction

Discontinuous Galerkin formulations [CKS00] have be-
come increasingly popular since they combine the flexibil-
ity in handling complex three-dimensional geometries, hp-
adaptivity – refining geometry (h) and increasing the poly-
nomial degree (p) – and the efficiency of parallel imple-
mentation in a natural way. Their application ranges from
hydrodynamic and aeroacoustic simulations to magnetohy-
drodynamic calculations of space thrusters or solar winds,
in which wave propagation over long distances is desired
(Fig. 8). Even highly complex phenomena such as fluid-
structure interactions can be handled with these methods.

A significant advantage of these schemes is their capa-
bility of performing very high order calculations that need
considerably fewer cells to provide a comparable accuracy
to classical simulation methods. They are also capable of
delivering low dispersion and dissipation errors in complex
three-dimensional domains and their solution is, in general,
a function with discontinuities at inter-element boundaries

while being C∞-continuous inside the cell. The complexity
of our Discontinuous Galerkin data is illustrated in Fig. 1.
The adaptivity in the polynomial degree of the solution and
the h-adaptive, non-conforming grid is shown.

In contrast to the abilities of simulation systems, an ex-
act rendering of nonlinear functions cannot be directly per-
formed by standard graphics APIs, since they are designed
to work with planar primitives that are intrinsically linear.
Thus, a widely used approach is to resample the higher-order
cells to approximate the polynomial results by means of a
considerably larger unstructured tetrahedral grid with linear
data [RCMG05,SBM∗06]. Other techniques directly visual-
ize the higher order data. But these techniques are either far
from being interactive or are limited in the polynomial de-
gree or the type of the underlying grid that can be handled.
In particular, there is no visualization technique for direct
volume rendering (DVR) of higher-order data with arbitrary
polynomial degree. To overcome these limitations, we have
developed a GPU raycasting framework which allows for di-

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2009.01603.x

337

http://www.eg.org
http://diglib.eg.org

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

3876 Prisms

11211 Tetrahedra

19448 Hexahedra

581929 Degrees of freedom

Polynomial

Degree: 21 3 4 5

Figure 1: A non-conforming mesh discretizing the domain
of a simulation of fluid flow around a sphere. The adaptive
degree of the polynomial solution is depicted on a planar cut
marked in the 3D illustration.

rect visualization of the high-order solution obtained with
discontinuous Galerkin methods (see Section 2). In this work
our focus is on direct volume rendering of polynomial scalar
fields calculated on complex non-conforming grids featuring
elements with curved cubic faces.

This paper presents our parallel visualization system with
its CUDA raycasting core in detail. A compact monomial
representation of the polynomial data is used for efficient
storage and evaluation on the GPU. Its benefits compared to
an orthogonal polynomial basis representation are discussed.
Due to the high order of the polynomials, the function eval-
uation at each sampling point during the computation of the
visualization is very expensive. An adaptive sampling strat-
egy which calculates a conservative approximation of the re-
quired sampling rate on a per cell basis reflects the adaptivity
in the data to optimize rendering time and to achieve high-
quality renderings. Often a single PC with one GPU is still
not sufficient to achieve interactive frame rates. We describe
an object-space parallelization strategy to distribute the ren-
dering across a cluster. The presented techniques are evalu-
ated by means of two simulation datasets on a stand-alone
PC and a GPU cluster with 16 nodes.

2. Space-time Discontinuous Galerkin data

Our hp-adaptive higher-order data is generated by the space-
time expansion Discontinuous Galerkin (DG) simulations
presented in [GLM08]. For an overview and review of the
development of DG methods see [CKS00]. The scalar field
solution is represented by piece-wise polynomial solutions
of high order with discontinuities at the cell boundaries. The
hp-adaptivity of the method implies varying cell sizes and
polynomial degree n. The local solution within one cell can

1

10

Ur-Element

1

10

Ref-Element

T r,w
T r,bT u,r

0

0

Phys-Element

world

space

barycentric

element space

reference

space

non

linear
linear

x rx u

x b

Figure 2: The element spaces used by the DG simulation.
Tr,w and Tr,b map the reference space element onto its physi-
cal space geometry, with respect to the world-space and the
element’s barycentric coordinate system.

be written as

P(x) = ∑
i

ciΨ
(n)
i (x), (1)

with {Ψ
(n)
i } being a basis of the space of polynomials up

to degree n and ci being the corresponding coefficients. To
optimize the scheme’s efficiency, the simulation uses an
orthonormal basis Ψ̃i constructed from a monomial basis

{b
(n)
i }= {xuyvzw|u,v,w∈N0,u+v+w≤ n} with b

(n)
i given

in order of increasing degree (see coeffID in Listing 1). Or-
thogonalization is done with the Gram-Schmidt algorithm

Φi(x) = bi(x)−
i−1
∑

j=0
〈bi(x),Ψ̃ j(x)〉Ψ̃ j(x)

Ψ̃i(x) =
Φi(x)√

〈Φi(x),Φi(x)〉
,

(2)

where Φi denotes an intermediate state and Ψ̃i the orthonor-
malized basis polynomials. Orthonormality of two basis
functions is defined as 〈ϕi,ϕ j〉 = δi, j , which involves the
L2 inner product 〈ϕi,ϕ j〉 :=

R

Ω ϕi(x)ϕ j(x)dx. Thus, in con-
trast to the monomial basis, the structure of the orthogonal
basis depends on the geometrical area Ω of the cell. To al-
leviate this overhead, the simulation represents the solution
as Pr(xr) in the reference space of each cell, where for each
type of non-curved elements, e.g., all tetrahedra, the same
orthogonal basis Ψ̃i can be used. The linear geometry trans-
formation Tr,w(xr) = Axr +tw = xw maps the reference space
element onto its world-space geometry (see Fig. 2).

To visualize the solution, Tr,w has to be inverted. For nu-
merical reasons we transform the reference space solution to
a barycentric coordinate system local to the cell instead of
using the world space system. The corresponding mapping
is denoted with Tr,b. With Pb(xb) := Pr(A

−1(xb − tb)) the
physical space polynomial with unchanged degree can eas-
ily be obtained. Our interactive visualization system uses a
monomial representation to allow efficient evaluation on the
GPU (see Section 6.2 for a discussion) which is obtained by
expansion and subsequent gathering of the monomial terms:

Pb(xb) = ∑
u+v+w<n

cu,v,w xuyvzw. (3)

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

338

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

3. Related work

Direct volume rendering of low-order unstructured grids is
extensively handled in the literature [MFS06]. We adopt the
raycasting approach of Garrity [Gar90], which is able to
handle complex unstructured grids, for our system. Visual-
ization algorithms for higher-order basis functions of arbi-
trary degrees, which are given on arbitrary cell types, have
limited coverage in the literature and are still an open re-
search problem. The lack of general higher-order visualiza-
tion tools is also due to the large number of available finite
element (FEM) methods that often use their own proprietary
basis functions and element mappings from reference space
to physical space.

There are a number of techniques that adaptively sub-
divide higher-order meshes to generate an optimal lin-
ear grid that can be rendered with standard visualiza-
tion tools. Usually, error metrics control the subdivision
depth. In [RCMG05], adaptive mesh refinement techniques
are employed to subdivide higher-order elements in refer-
ence space. Schroeder and Thompson developed an edge-
based and a topology based adaptive tessellation method
[SBM∗06]. Tesselation is an expensive preprocessing step
resulting in an immense increase of data size. Our sys-
tem belongs to the group of techniques that directly visu-
alize higher-order data. This requires the visualization sys-
tem to project the polynomial solution, often given in ref-
erence space, to the physical world space. The main is-
sue is the costly inverse mapping of positions from world
space to reference space that has to be calculated during
the visualization process. There is no analytical solution for
curved elements, in general. Williams et al. [WMS98] vi-
sualize quadratic tetrahedra with flat faces resulting from
FEM simulations with DVR accurately. Other cell types can
also be handled, but not in high quality. Curved tetrahedra
are handled by Wiley’s raycasting and isocontouring tech-
niques [WCHJ04, WCG∗03]. Parametric curves are fitted to
the curved rays in reference space for DVR. Subsequently
the polynomial solution is sampled along the curve. Such an
approach is limited to quadratic elements. Pixel-exact ren-
dering of isosurfaces for spectral hp-elements is discussed
in [NK06]. The 3D reference space solution is projected onto
1D polynomials defined along the viewing rays in physi-
cal space. Then, the ray-isosurface intersections are iden-
tified by solving a 1D root finding problem for each ray.
Those techniques are in general not interactive. A hard-
ware accelerated rendering approach for 2D slicing of 3D
space-time cubic tetrahedral grids is discussed in [ZGH04].
Here, the element mappings of the tetrahedra are linear, al-
lowing a fast inversion and evaluation of the solution in
reference space. Meshless approximation methods are the
third class of higher-order visualization techniques. Zhou
and Garland [ZG06] implemented a point-based volume vi-
sualization system that resamples non-conforming, tetrahe-
dral meshes with points by applying Lloyd relaxation in a
preprocessing step. In [MNKW07], a particle system is pro-

posed to approximate higher-order finite element isosurfaces
in reference space. Typically, there is a trade-off between re-
quired pre-computation time and desired accuracy of the ap-
proximation with this class of methods.

Ma [Ma95] proposed a distributed architecture for tetra-
hedral grids based on raycasting. For distributed rendering
across a cluster, they create object space partitions in a pre-
processing step that are balanced concerning the amount of
cells they contain. Compositing works on the basis of ray
segments that are generated every time the ray enters its sub-
volume, which can occur several times due to the concavity
of a sub-volume. Vo et al. [VCS∗07] used an image-space
partitioning technique instead. A distributed volume visual-
ization system based upon kd-trees for object-space parti-
tioning, like we use it in our system, was described by Müller
et al. [MSE07] in the the context of uniform grids. They
implemented and evaluated static as well as dynamic load-
balancing strategies. Aykanat et al. [ACFK07] discuss the
object-space decomposition problem for tetrahedral grids in
terms of a graph partitioning problem using an estimation
scheme for view-dependent node and edge weighting.

4. Raycasting h-adaptive Discontinuous Galerkin grids

The Discontinuous Galerkin scheme discretizes the simu-
lation domain using complex non-conforming unstructured
grids consisting of different types of cells. Due to the h-
adaptivity of the grid, the sizes of the individual cells can
vary over several orders of magnitude. Additionally, the
grids contain non-convex regions. Fig. 1 shows a typical ex-
ample of such a mesh. The dataset contains 1290 curved cu-
bic triangle faces, given in a parametric surface representa-
tion in physical space, to better approximate the sphere ob-
stacle within the domain. Non-conforming curved faces are
not contained in our data.

There are two major classes of volume rendering tech-
niques for visualizing volume data on unstructured grids.
The first class are cell-projection techniques that require the
cells to be sorted in visibility order. The cells are then pro-
jected to the image plane one after the other. With this ap-
proach non-convex cells cannot be handled. Additionally,
even for unstructured grids containing convex cells only, de-
termining a correct sorting of the cells is not always possible
due to visibility cycles [KE01]. Our system is based on ray-
casting which is well-suited for these unstructured grids. By
exploiting neighborhood information the unstructured grid
can be traversed along the viewing rays [Gar90]. At first the
entry point of the ray into the grid has to be determined.
Often, a search data structure is employed to find the entry
cell efficiently. As soon as the entry cell is known, the exit
face, where the ray leaves the cell, can be determined. Then,
the grid traversal algorithm can directly continue with the
next cell along the ray. This also works with curved element
faces, given that an appropriate intersection routine is avail-
able. Fig. 3 (left) illustrates this by an example. A ray (r2)

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

339

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

A1

r1

r2

r3

C0

A0

C1

C2

C3

C4

C5

C6 C
0

C
1

C
2

C
3

f
1

f
2

f
3

Figure 3: Unstructured grid featuring curved cells and the
atom grid acceleration data structure which is used for
finding entry cells and skipping empty regions (left). Non-
conforming faces have to be dissected into sub-faces that
are shared by at most two cells (right).

traverses a curved cell for a short segment (C3, red), leaves
the cell, traverses another cell (C4, blue), and then re-enters
the first cell (C3, red). As required by DVR the contributions
of the three segments to the final image can easily be blended
together in visibility order.

5. Higher-order raycasting system

In this section we describe the rendering system including
the raycasting kernel implemented in CUDA. Parallelization
is discussed in Section 7. An overview diagram of the system
is shown in Fig. 4.

After loading the higher-order dataset three preprocessing
steps are performed. To speed up the procedure of finding the
cells where the rays enter the grid, an acceleration data struc-
ture (atom grid) is constructed. Secondly, bounding volumes
are generated for curved faces. Thirdly, a gradient analysis
of the polynomial solution is performed, which is needed for
the adaption of the sampling step size (see Section 6.4). The
steps are executed only once for each dataset. The topology
and geometry of the unstructured grid and the polynomial
data are stored in multiple 2D textures to benefit from tex-
ture cache. Fig. 5 illustrates the data layout and inter-texture
dependencies. To store the coefficients of the polynomial so-
lution a 2D texture is used due to the size limitations of 1D
textures. The atom grid is stored in a 3D texture. For the
transfer function a 1D texture is sufficient. The textures are
uploaded to the GPU before the main render loop starts.

A frequency analysis, which is needed by the step size
adaption algorithm, is performed each time the transfer func-
tion changes. The sampling step sizes are calculated for each
cell, and uploaded to the GPU, altogether taking less than
one second. Then the raycasting kernel is executed. For each
pixel of the resulting image, a ray is cast into the scene start-
ing at the camera location.

The raycasting kernel consists of three major phases. In
the initialization phase, the ray is constructed and the inter-

[]

[]

Cells (ushort4)
face list

link

solution

link

Faces (ushort2)
face

type
degree

vertex

links

curved

patch link

2cell

neighbour

Coordinates (float4)
vertex

(x,y,z,0)

center

of mass

Solution coeffs (float)
n

coeff.#coefficients n

Face lists (ushort2)
nface

link[]# faces n

...

i

Figure 5: Each block shows the layout of one data element
stored in the 2D texture of the annotated name and format.
To be able to refer to arbitrary locations in other 2D textures
links are stored in an ushort2 format. Each cell has one link
referring to the list of its faces and another link pointing to
its field polynomial solution. For each polynomial the num-
ber of coefficients n is stored followed by the sequence of the
n coefficients.

section of the ray with the dataset’s bounding box is calcu-
lated. The ray thread stops immediately if there is no inter-
section, otherwise the second phase (Atom Grid Phase) and
third phase (Grid Traversal Phase) are executed in an itera-
tive manner, until the ray leaves the bounding box. In order
to find the entry cell efficiently, to be able to handle non-
convex grids with holes and to partition the domain for par-
allelization, we employ a uniform grid structure. This atom
grid resides above the actual simulation grid and is traversed
in the Atom Grid Phase. Each atom grid cell contains links to
the dataset’s cells it covers. The edge length of the smallest
cell defines the desirable resolution of the atom grid. If the
grid does not fit into graphics memory with this resolution,
it is coarsened globally. For determining the entry cell for a
given ray, regardless of whether this is the initial entry cell
or whether the grid has been left before, the ray is checked
against all cell faces of the current atom grid cell. If there
is an intersection, a new cell entry position has been found,
otherwise it proceeds to the next atom grid cell according
to the 3D voxel traversal algorithm [AW87]. The ray entry
search is illustrated in Fig. 3 (left). Ray r2 finds its entry cell
C1 in atom A0. The intersection of ray r1 with C0 and C1
however are invalid in A0. The entry cell C0 of r1 is found
after traversing to A1.

If an entry cell and position is found, the grid traversal
phase starts. At first the exit face and position where the ray
leaves the cell is determined. Based on the entry and exit po-
sition the segment of the ray within the cell is known. Now,
the higher-order polynomial field solution of the cell is sam-
pled along this ray segment. Section 6 describes the higher-
order polynomials, the storage, and the evaluation in the ker-
nel. After a cell has been processed, the algorithm goes on
iteratively with the next cell found along the ray. If the ray
leaves a cell through a face without an adjacent neighbor
cell, the algorithm proceeds with the Atom Grid Phase.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

340

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

Initialization

- Ray setup

- Cache exponent map

- Prepare coefficient caching

Bounding Box Ray Entry/Exit

- Intersect bounding box
End of Ray Segment

Determine next Atom

- 3D voxel traversal

Intersect Cells in Atom

- Find closest entry cell

Write Pixel Color

- Exit thread

Initialization Phase

Preprocessing

Render Loop

Atom Grid Phase Grid Traversal Phase (Sec. 6)

Intersect Cell Faces (6.1)

- Determine next cell

- Determine ray seg. length

Sampling Preparations

- Cache the cell solution

- Look up center of mass

- Look up step size

Cell Sampling (6.3)

- Evaluate polynomial

- TF color lookup

- Accumulate Color

- Gradient Analysis (Sec. 6.4)

- Construction of the atom grid

- Construction of curved face

 bounding volumes

Intersection

No Intersection
Next atom

exists

Exit face

not shared
Exit face

shared

CUDA Unstructured

Grid Raycasting Kernel

all rays finished

until

leaving

cell

no

yes
Transfer function (TF)

frequency analysis (Sec. 6.4)

Start raycasting

Display image

T
F

 c
h
an

g
ed

?

Figure 4: Overview diagram of the system. Alternative execution paths are shown in one color.

6. Grid traversal phase

The raycaster handles hybrid grids that consist of different
types of cells, including tetrahedra, hexahedra, prisms and
pyramids. Non-conforming cells, where a cell can have more
than one neighbor directly accessible through one face of the
cell, are also supported. Our raycaster expects faces shared
by two neighbors at most. Thus, non-conforming faces have
to be dissected as in Fig. 3 (right). In our case the dissection
is already handled by the simulation.

6.1. Ray curved face intersection

The raycasting system supports higher-order elements with
curved faces. Our data contains cubic quad and triangle
faces that are given in a parametric surface representation.
Ray patch intersection routines are integrated into the ker-
nel for those patches. The system can be extended to other
types of patches in a straightforward manner. The intersec-
tion of the ray with a cubic patch cannot be calculated ana-
lytically. A common approach is to represent the ray by two
intersecting planes and employ an iterative Newton-Raphson
solver to find the roots of the resulting two non-linear equa-
tions [GA05]. A good initial guess as a starting point for
the iteration is required for fast convergence. In raytracing
bounding volume hierarchies are used to isolate the roots
prior to applying Newton-Raphson. We use object-aligned
parallelepipeds for the quad faces and tripipeds for the cu-
bic triangles [BS93]. Fortunately, our curved faces are only
slightly curved; a single bounding volume is sufficient for
the algorithm to converge to the intersection point in less
than 4 Newton iterations. If the angle between the ray and the
patch becomes too small, the ray may intersect the patch at
multiple points. In such cases the Newton iteration is started
at two opposite positions on the patch. Then the correct inter-
section point can be isolated [BS93]. In the CUDA kernel the
patches are represented in a monomial basis. The quad faces,
which are cubic tensor-product patches, are represented by
16 3D vector coefficients. For the triangle patches 10 vector

coefficients are required. The coefficients of the patches are
stored in a 2D texture. For the calculation of the bounding
volumes a Bézier representation is used.

6.2. Polynomial representation

The raycasting system samples the barycentric monomial
representation Pb(xb) in physical space (see Section 2). By
not switching to reference space the transformation T−1

r,b
does not need to be performed at run time. A compact
representation of the polynomial solution is obligatory for
efficient evaluation. We additionally need the gradient of
the field at the sample points for shading calculations. The
monomial representation meets our requirements best. Gra-
dients come at low extra cost and the basis is compact in the
sense that only the coefficients cu,v,w need to be stored ex-
plicitly (see Eq. 3). The exponents u,v,w of the respective
monomial basis functions can be determined according to
the scheme given in Listing 1. We illustrate the difference in
size of the representations by the example of the simulation’s
Gram-Schmidt orthogonalized basis, built from monomials.
Here, the structure of the basis depends on the coefficients
〈bi(x),Ψ̃ j(x)〉. A formula for the number of these coeffi-
cients can be directly derived from the algorithm of Eq. 2
with an arithmetic series. Table 1 shows that with increas-
ing degree n the number of total coefficients o(n) of the or-

Table 1: Comparison of the number of coefficients m re-
quired to represent the polynomial solution of degree n of a
general curved element in the monomial basis and the num-
ber of coefficients o required in the orthogonal basis.

degree n 3 4 5 6 7

m(n) = (n+1)(n+2)(n+3)
6 20 35 56 84 120

o(n) = m(n)(m(n)+1)
2 210 630 1596 3570 7260

overhead factor 10.5 18 28.5 42.5 60.5

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

341

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

thogonal polynomial quickly becomes very large. Note, o(n)
represents the worst case scenario of a general (curved) cell
where all coefficients are non-zero.

The missing orthogonality property of the monomial ba-
sis functions makes it unsuitable for simulation since it does
not yield sparsely populated matrices which allow efficient
iterative solvers to be used on the resulting system of equa-
tions. Moreover, it introduces numerical instabilities due to
badly conditioned matrices. Our visualization system how-
ever only needs to evaluate the resulting final solution. The
calculations are done with single precision floating-point ac-
curacy on the GPU. Being concerned with accuracy, we in-
vestigated the numerical stability. For our datasets a double
precision evaluation, which we took as reference, revealed a
very low maximum relative point-wise error of 1.3 ·10−6 for
the evaluation of the monomial representation in barycentric
coordinates with single precision.

6.3. Evaluating the polynomials in the kernel

To evaluate the monomial representation at a point, its world
coordinates are transformed to the cell’s local barycentric
coordinate system. The local coordinate is then used to iter-
atively evaluate the polynomial and the gradient, as outlined
in Listing 2. The scheme in Listing 1 defines an increasing
degree order for the monomial basis functions, enabling the
support for polynomials of varying degree. As the exponents
are the same for all cells, we precompute them up to degree
seven, and load them into the 1D array map stored in fast
shared memory before raycasting starts. Caching is the bet-
ter choice than a calculation at runtime since the coefficients
only require 360 Bytes (120 unsigned bytes for each x,y, and
z). Due to the size limitations of 1D textures, the degrees
and coefficients of all polynomials are stored in one large
2D texture, each cell occupying a small consecutive block
of memory that contains its coefficients in this order. We
preload the coefficients of the polynomial into fast shared
memory before the sampling. As the rays of one block are
largely incoherent, each ray thread needs to load the polyno-
mial coefficients of its cell. The number of coefficients that

int coeffID=0;
float3 map[m(n)]; // exponent array of size m(n) (Table 1)
for (int i=1; i<=n+1; i++)
for (int j=1; j<=i; j++)
for (int k=1; k<=i−j+1; k++) {
map[coeffID].x = i−j−k+1; // u, exponent of x
map[coeffID].y = j−1; // v, exponent of y
map[coeffID].z = k−1; // w, exponent of z
coeffID++;

}

Listing 1: Pseudocode to compute the exponents of the 3D
monomial basis for a given maximum polynomial degree n.

can be preloaded is limited by the number of ray threads in
the block and the available shared memory.

6.4. Adaptive sampling for direct volume rendering

With a conservative choice of a user-defined ’safe’ minimum
sampling step size for the whole dataset large parts of our
hp-adaptive data gets oversampled, leading to a very large
increase in runtime, whereas on the other hand it can not
be guaranteed that with the chosen rate all features are sam-
pled adequately. Calculating the required sampling rate is
not trivial, as the function to sample is not known a priori.
DVR usually has to deal with a composited color function
kc(x) = g ◦ f (x), which determines the color kc of a field
sample by applying a user defined transfer function g to the
scalar field sample f (x). However, it is not practical to de-
termine the exact sampling frequency every time a sample
is taken. Thus, in our system, a semi-conservative sampling
strategy on a per-cell basis is applied, sampling each cell
with its specific adapted sampling rate. The required sam-
pling rate depends on the color function kc. According to
Bergner et. al [BMWM06] it is possible to analyze the com-
posited signal kc = g◦ f by looking at both components sep-
arately. A good approximation of the local band limiting fre-
quency νkc

= νgmaxx| f ′(x)| can be calculated by taking the
maximum frequency νg of the transfer function times the lo-
cal gradient magnitude of the underlying scalar field. In a
preprocessing step we determine for each cell the range of
field values [fmin, fmax] and the maximum gradient magni-
tude |∇ f |max within the cell by sampling the cell’s polyno-
mial solution on a very fine grid. Each cell is sampled with
ten times the polynomial degree samples in each direction.

The frequency analysis of our transfer function, has to be

void evalPolynomial(float3 pos, float& res, float3& grad) {
res = 0; // scalar field sample
grad = {0,0,0}; // gradient field sample

for (int coeffID=0; coeffID<m(polynomialDegree); coeffID++) {
float3 prod = pow(pos, map[coeffID]); // evaluate monomial
prod = prod.x∗prod.y∗prod.z; // basis function

float coeff; // fetch basis function coefficient
if (coeffID < MAX_COEFFS_IN_SHARED_MEM)
coeff = sharedMemoryCoeffs[coeffID];

else

coeff = texture2D(texCoeffs, solutionOffset+coeffID);

res += coeff∗prod; // add monomial contribution
grad.x += map[coeffID].x ∗ (coeff∗prod/pos.x);
grad.y += map[coeffID].y ∗ (coeff∗prod/pos.y);
grad.z += map[coeffID].z ∗ (coeff∗prod/pos.z);

}
}

Listing 2: Evaluating the field polynomial on the GPU.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

342

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

Figure 8: Illuminated direct volume rendering of the sphere dataset showing the typical von Karman vortex street roll-up.

Figure 6: Image crop of the shock channel results (see
Fig. 11) showing the discontinuities in the data and the ef-
fect of trading rendering quality against responsiveness on a
stand-alone PC. High quality rendering (left, step size factor
1, 6.3 sec), interactive rendering (right, factor 20, 0.4 sec).

Curved Face RaycastingStandard Raycasting

Figure 7: Direct volume rendering of the flow around the
sphere (large image). Only directly on the curved sphere a
difference between raycasting with and without curved face
handling is visible (small images).

executed each time the user modifies the color mapping of
the scalar field. In our case the user is able to draw RGBA
transfer functions that are stored in an array of size 256. Fast
Fourier Transform is employed to calculate the frequency
power spectra of the associated color functions (R,G,B)×A.
Cells often only cover a small part [fmin, fmax] of the trans-
fer function’s range. We are exclusively interested in the fre-
quencies occurring in the cell’s narrow window. To account
for this, the part of interest is cut out of the transfer function
and resampled again onto 256 samples prior to applying the
FFT. In general, the windowed part of the transfer function
is non-periodic. To prevent artificial high frequency compo-
nents introduced at the borders, the transfer function is mul-
tiplied by a Hanning-Window w(x) = 0.5− 0.5cos(2πx/d),
where d is the width of the transfer function’s range. In fre-
quency space this results in a convolution of g f with the win-

dow’s spectrum w f , which approximately equals a smooth-
ing with a symmetric Gaussian-like kernel of width three.
Because of that the direct current (DC) component of the sig-
nal should be removed before applying the windowing func-
tion. Another issue comes with the hand drawn non-smooth
nature of the transfer function. To get reasonable results from
the frequency analysis, the functions are smoothed with a
Gaussian kernel before transforming to frequency space. The
color channel with the highest frequency component, larger
than a small threshold, determines νg. With all components
at hand νkc

can be determined for each cell and the step size
h = 0.5/νkc

can be calculated. Multiplying the adaptive step
size h with a factor smaller than 1 improves the overall ren-
dering quality. To improve responsiveness during camera in-
teraction a factor larger than 1 can be chosen (Fig. 6).

7. Parallelization

We use an object-space partitioning approach to distribute
raycasting across multiple GPUs in a cluster environment.
The grid is subdivided into as many partitions as there are
GPUs. Note that in our case, unlike for medical volume
data, the performance for datasets that can be visualized in
high quality close to interactivity is limited by pure render-
ing speed only, while GPU memory capacity does not play a
big role. Thus, we limit ourselves to task distribution and do
not consider data distribution in this work, which means that
the whole dataset with all the necessary data structures needs
to fit onto each single GPU. However, this also means that
data transfers at runtime are avoided which potentially have
a large impact on load balancing. Subdividing the dataset
on cell level would be problematic as this might lead to non-
convex partitions which makes correct compositing impossi-
ble. Instead, we use the overlaying uniform atom grid struc-
ture that we initially introduced for determining entry cells.
Atoms cover a cuboid volume and contain cells that are in-
cluded or intersect this volume.

In order to distribute the rendering task across multiple
nodes, our system partitions the atom grid to convex, non-
overlapping groups of atoms called bricks. A brick is ren-
dered on the GPU in one pass and the corresponding rays
are clipped to that brick. This guarantees that no regions of
cells that are contained in multiple bricks are sampled sev-
eral times. The renderings of all nodes are transferred to the
display node, that usually is also used for user interaction, to
composite the final image using standard blending for each
frame. Backend nodes determine the blending order of their
corresponding brick by considering the view point and us-

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

343

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

ing the kd-tree which is employed for load-balancing as ex-
plained below. Finally, the order index is attached to the im-
age before sending it to the frontend node.

For the initial partitioning of the atom grid into bricks and
additionally for supporting dynamic load balancing at run-
time, each atom saves a value that roughly estimates its ren-
dering complexity. It is computed by considering all con-
tained cells qi and summing up their weighted geometry
l(type(qi)) and the number of monomials m(deg(qi)) (see
Tab. 1) of their polynomial solution, whereas the influence
of a cell is relative to its volume inside the atom vol(qi):

#cells

∑
i=1

vol(qi) · (l(type(qi))+m(deg(qi))). (4)

The geometry weight function l returns the highest values
for cells featuring curved faces. Besides this static complex-
ity measure, the load balancing algorithm also considers the
rendering time of each brick which is distributed over all
atoms of the brick relative to their complexity values. Op-
tionally, the user can manually tweak the performance by ad-
justing the weighting of the complexity components and the
influence of the complexity measure in the rendering time
distribution. The estimated render times per atom are used
to determine which atoms to add or to remove from a brick
and thus influence the workload of a GPU.

The partitioning of the atom grid is done using a kd-tree
which is rebalanced every frame. It is traversed top-down
and sub-trees are balanced by moving the split plane towards
the region with the larger overall estimated render time until
the optimal solution is found. This means that the weights
on both sides should be as close as possible. Moving the
split plane is slowed down by a rubber band effect that pe-
nalizes the relocating of the split plane. It weights the overall
estimated render time of the smaller partition with a factor
that increases with the number of atoms that the split plane
moved and can be adjusted by the user. Slowing down avoids
cases in which huge back and forth leaps occur per frame due
to an inappropriate complexity estimation

8. Results

Our higher-order rendering framework allows scientists to
interactively visualize data of their higher-order simulations
in contrast to the traditional time-consuming approach of re-
sampling and using standard postprocessing software. Using
our adaptive sampling approach, rendering times for high-
quality visualizations are in the range of one second up to

Table 2: Relation of render time to solution degree n show-
ing a linear scaling in the number of basis functions m(n).

n / m(n) 2 / 10 3 / 20 4 / 35 5 / 56 6 / 84

t in ms 205 307 476 730 1067

20 seconds on a stand-alone PC. Fig. 6 demonstrates how
render quality can be reduced during camera movements to
achieve interactive framerates in such an environment. As
soon as the camera movement stops, the high quality image
of Fig. 11 is calculated and presented to the scientist. In a
cluster environment interactive rates can be obtained even
with the high quality settings.

The performance measurements have been conducted for
two application datasets. The sphere test-case is a hydrody-
namical simulation solving the compressible Navier-Stokes
equations: with a Reynolds number of Re = 300 a uniform
flow of Mach number Ma = 0.3 is initially set up. The sim-
ulation should then show a typical von Karman vortex street
roll-up as illustrated in Fig. 8. The shock channel dataset
shown in Fig. 11, is a numerical simulation where a Ma = 3
shock hits an obstacle positioned in the middle of a chan-
nel. As the shock moves over the obstacle, a lifted ballis-
tic wave should form together with reflections of the shock
wave on the channel walls. The handling of shocks as well
as a sufficient resolution of the effects can be a challenging
task for low order numerical schemes. In the shock chan-
nel simulation the high polynomial degree of seven compen-
sates nicely for the very low resolution (20× 2× 3) of the
underlying regular mesh. Here, the box obstacle is the size
of one cell. Some stronger discontinuities at the boundaries
of the cells, which are inherent to the DG solution, can be
seen in the closeup views in Fig. 6. The red isoslab of the
upper left cell is strongly curved in the lower right edge,
not matching the solution of the neighboring cells. In the
direct vicinity of the obstacle in the sphere dataset the mesh
consists of 1290 curved cubic triangles. Timings are given
in Table 3 for raycasting with handling of curved faces en-
abled and disabled for the sphere dataset. Fig. 7 shows the
improved image quality that is achieved with curved face
handling enabled. The red high density regions touching the
front of the sphere better reflects the curved surface of the
obstacle. We generated an artificial dataset to determine the
scaling of the performance with the polynomial degree of the
data (Table 2). To compare our higher-order raycasting im-
age results, we resampled the higher-order data onto a reg-
ular grid and visualized it with a standard GPU-based ray-
caster. Fig. 10 illustrates that even a very high resampling
resolution, which leads to a dataset size that can not be han-
dled by a single PC, is by far not high enough to capture all
features in the data.

For the evaluation of the scaling of our distributed sys-
tem, up to sixteen cluster nodes were used that are equipped
with a NVIDIA GeForce 285 GTX each and connected via
Gigabit ethernet. A series of 285 frames was rendered while
moving the camera around the dataset and zooming in and
out at various speed. The averaged timing results over all
frames are depicted in Fig. 9. It can be seen that the system
overall exhibits good scaling behavior. However, it is hin-
dered by several effects to a different degree. As can be seen
in the left graph, the total rendering time is close to the max-

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

344

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

Figure 9: Left: Scaling of performance with the number of rendering nodes. Middle: Two effects hindering balancing. The blue
line depicts the sum of the ratio of all backend rendering times to the maximum backend rendering time for each timestep:

∑
timesteps
i=1

max(times)−times[i]
(timesteps−1)·max(times) . This shows total backend rendering imbalance. The red line illustrates the relative difference

between the maximum backend render time and the time it takes for the frontend node until display. It can be seen that what
hinders better scaling is primarily load imbalance rather than network traffic. Right: Kd-tree of a frame on the camera path.

imum rendering time on the backend nodes which induces
that the impact that network traffic has on scaling is quite
small, even though it naturally increases with the amount of
rendering nodes involved. This shows more clearly in the red
line of the second graph which illustrates that there is only a
small difference between the maximum backend render time
and the overall time to display. In contrast, the blue line of
the second graph depicts significant load imbalance between
the backend nodes which results in a lower occupancy of the
rendering nodes. The reason for that is that we have a very
inhomomogeneous dataset with widely varying complexities
but a uniform grid on which load balancing is based. Only
few atoms cover a significant share of the overall complex-
ity of the dataset. Thus a big, indivisible part of the dataset
is moved in one balancing step, as atoms cannot be split.
Furthermore, not only single atoms but a whole 2D array
of atoms is added to a brick when moving the split plane
of the kd-tree for one unit. Due to this, the dataset cannot
be distributed evenly according to its complexity which fi-
nally leads to significant variations in the rendering times of
the backend nodes. It can also be observed that this limited
partitioning granularity leads to bigger performance impacts
with a growing number of render nodes due to the increas-
ing distribution imbalance. We performed our tests using an
atom grid with the atom grid resolution 288×312×312.

9. Conclusion and Future Work

The implementation of the proposed visualization system
was driven by the fact that traditional visualization software
is not able to provide an adequate mechanism to visual-
ize higher-order data resulting from discontinuous Galerkin
simulations. We showed the advantages of our system. The
time required to generate a visualization of this data in com-
parison to common approaches is drastically reduced as the

simulation data is visualized directly. High-quality rendering
results are achieved with an adaptive sampling technique fit-
ted to the hp-adaptive data which calculates appropriate sam-
pling step sizes on a per cell basis. Moreover, our system ex-
ploits the computational power of GPU clusters. For future
work we consider the replacement of the uniform atom grid
with a more adaptive structure like a kd-tree that allows to
better adapt to the inhomogeneous properties of the dataset.
This would allow for a more efficient determination of en-
try cells and significantly improve scaling. Additionally, we
want to extend the system to data distribution for handling
even larger datasets.

Acknowledgements

We thank our colleagues from the Institut für Aero- und
Gasdynamik for their continuous support and for providing
datasets. This work is supported by Deutsche Forschungsge-
meinschaft (DFG) within the Cluster of Excellence in Sim-
ulation Technology.

References

[ACFK07] AYKANAT C., CAMBAZOGLU B. B., FINDIK F.,
KURC T.: Adaptive decomposition and remapping algorithms
for object-space-parallel direct volume rendering of unstructured
grids. J. Parallel Distrib. Comput. 67, 1 (2007), 77–99.

[AW87] AMANATIDES J., WOO A.: A fast voxel traversal algo-
rithm for ray tracing. In Eurographics (1987), pp. 3–10.

[BMWM06] BERGNER S., MÖLLER T., WEISKOPF D., MU-
RAKI D. J.: A spectral analysis of function composition and its
implications for sampling in direct volume visualization. IEEE
Transactions on Visualization and Computer Graphics 12, 5
(2006), 1353–1360.

[BS93] BARTH W., STÜRZLINGER W.: Efficient ray tracing for
Bézier and B-spline surfaces. Computers & Graphics 17, 4
(1993), 423–430.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

345

M. Üffinger & S. Frey & T. Ertl / Visualization of Higher-Order Finite Elements

[CKS00] COCKBURN B., KARNIADAKIS G. E., SHU C.-W.:
Discontinuous Galerkin Methods. Lecture Notes in Computa-
tional Science and Engineering. Springer, 2000.

[GA05] GEIMER M., ABERT O.: Interactive Ray Tracing of
Trimmed Bicubic Bézier Surfaces without Triangulation. In
Proc. of the International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG)
(Feb. 2005), pp. 71–78.

[Gar90] GARRITY M. P.: Raytracing irregular volume data. In
VVS ’90: Proceedings of the 1990 Workshop on Volume Visual-
ization (1990), ACM, pp. 35–40.

[GLM08] GASSNER G., LÖRCHER F., MUNZ C.-D.: A Discon-
tinuous Galerkin Scheme based on a Space-Time Expansion II.
Viscous Flow Equations in Multi Dimensions. J. Sci. Comput.
34, 3 (2008), 260–286.

[KE01] KRAUS M., ERTL T.: Cell-Projection of Cyclic Meshes.
In Proceedings of IEEE Visualization ’01 (2001), pp. 215–222.

[Ma95] MA K.-L.: Parallel volume ray-casting for unstructured-
grid data on distributed-memory architectures. In PRS ’95: Pro-
ceedings of the IEEE Symposium on Parallel Rendering (1995),
ACM, pp. 23–30.

[MFS06] MARMITT G., FRIEDRICH H., SLUSALLEK P.: Inter-
active Volume Rendering with Ray Tracing. In Eurographics
State of the Art Reports (2006), pp. 115–136.

[MNKW07] MEYER M., NELSON B., KIRBY R., WHITAKER

R.: Particle systems for efficient and accurate high-order finite
element visualization. IEEE Transactions on Visualization and
Computer Graphics 13, 5 (2007), 1015–1026.

[MSE07] MÜLLER C., STRENGERT M., ERTL T.: Adaptive load
balancing for raycasting of non-uniformly bricked volumes. Par-
allel Comput. 33, 6 (2007), 406–419.

[NK06] NELSON B., KIRBY R. M.: Ray-tracing polymorphic
multidomain spectral/hp elements for isosurface rendering. IEEE
Transactions on Visualization and Computer Graphics 12, 1
(2006), 114–125.

[RCMG05] REMACLE J.-F., CHEVAUGEON N., MARCHANDISE

E., GEUZAINE C.: Efficient visualization of high-order finite
elements. Journal for Numerical Methods in Engineering 69, 4
(2005), 750–771.

[SBM∗06] SCHROEDER W. J., BERTEL F., MALATERRE M.,
THOMPSON D., PEBAY P. P., O’BARA R., TENDULKAR S.:
Methods and framework for visualizing higher-order finite el-
ements. IEEE Transactions on Visualization and Computer
Graphics 12, 4 (2006), 446–460.

[VCS∗07] VO H., CALLAHAN S., SMITH N., SILVA C., MAR-
TIN W., OWEN D., WEINSTEIN D.: iRun: Interactive Render-
ing of Large Unstructured Grids. In Proceedings of the 7th Eu-
rographics Symposium on Parallel Graphics and Visualization
(EGPGV 2007) (2007), pp. 93–100.

[WCG∗03] WILEY D. F., CHILDS H. R., GREGORSKI B. F.,
HAMANN B., JOY K. I.: Contouring curved quadratic elements.
In VISSYM ’03: Proceedings of the Symposium on Data Visuali-
sation (2003), pp. 167–176.

[WCHJ04] WILEY D. F., CHILDS H. R., HAMANN B., JOY

K. I.: Ray casting curved-quadratic elements. In VISSYM ’04:
Proceedings of the Symposium on Data Visualisation (2004),
pp. 201–210.

[WMS98] WILLIAMS P. L., MAX N. L., STEIN C. M.: A high
accuracy volume renderer for unstructured data. IEEE Transac-
tions on Visualization and Computer Graphics 4, 1 (1998), 37–
54.

[ZG06] ZHOU Y., GARLAND M.: Interactive point-based ren-
dering of higher-order tetrahedral data. IEEE Transactions on
Visualization and Computer Graphics 12, 5 (2006), 1229–1236.

[ZGH04] ZHOU Y., GARLAND M., HABER R.: Pixel-exact ren-
dering of spacetime finite element solutions. In Proceedings of
IEEE Visualization (2004), pp. 425–432.

4 resampling grid
3

Figure 10: Comparison of higher-order raycasting (left) and
DVR of brute-force resampled data on a regular grid (right).
A small region of the sphere dataset with an edge length of
0.3 in comparison to a size of 120 for the whole dataset
is shown. With the chosen resolution the resampled visual-
ization data would require more than 14 GBytes of storage
(scalar and gradient field) for the whole domain.

t=1.0 t=2.0 t=3.0

t=3.5120 cells

degree 7

7140 degrees of freedom

<

Figure 11: Shock channel sequence of flow around a box. A
zoom-in image of the marked red region is given in Fig. 6.

Table 3: Performance results for adaptive and fixed step
sizes in seconds measured on a PC with an AMD Opteron
with 2.3 GHz, 32 GB of RAM and a NVIDIA GeForce 285
GTX (1024MB) (1280×910 viewport). The global minimum
step size of the adaptive case was used for the fixed case.

adaptive fixed min step size

Channel (t = 1.0) 1.01 9.2 0.003
Channel (t = 2.5) 2.2 19.8 0.0013
Channel (t = 3.5) 6.3 23.2 0.001
Sphere 1.5 >60 0.005
Sphere (curved) 2.0 >60 0.005
Sphere Zoom In 7.9 >60 0.002
Sphere Z. (curved) 11.5 >60 0.002

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

346

