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Abstract—The visualization of results while the simulation is running is increasingly common in extreme scale computing
environments. We present a novel approach for in situ generation of image databases to achieve cost savings on
supercomputers. Our approach, a hybrid between traditional inline and in transit techniques, dynamically distributes
visualization tasks between simulation nodes and visualization nodes, using probing as a basis to estimate rendering cost.
Our hybrid design differs from previous works in that it creates opportunities to minimize idle time from four fundamental
types of inefficiency: variability, limited scalability, overhead, and rightsizing. We demonstrate our results by comparing our
method against both inline and in transit methods for a variety of configurations, including two simulation codes and a
scaling study that goes above 19K cores. Our findings show that our approach is superior in many configurations. As in situ
visualization becomes increasingly ubiquitous, we believe our technique could lead to significant amounts of reclaimed

cycles on supercomputers.

Index Terms—Visualization, High performance computing, In situ

1 INTRODUCTION

CIENTIFIC visualization is a key approach for un-

derstanding the complicated data sets produced by
computational simulations on supercomputers. These
simulations produce massive data sets, with meshes
containing billions or even trillions of cells per time
step, and so the visualization process is typically paral-
lelized to complete on interactive time scales. Further,
this visualization process often occurs on the same su-
percomputer that performed the simulation, obviating
the need to relocate simulation data [1]]-[4].

Leading-edge supercomputers are quite expensive,
meriting significant investigation into optimizing their
usage. Several new supercomputers are built annually
with hardware procurements costs upwards of $200M,
and their true costs rising higher over time, including
energy costs, staffing, and upkeep. Each job running
on a supercomputer shares these costs. As a result,
one important way to optimize a supercomputer’s
usage is to optimize individual jobs, i.e., having a job
complete using fewer node hours. Such a speedup
frees up node-hours for running other jobs, enabling
the supercomputer to perform more calculations in its
finite life than it could otherwise. If a speedup can
be aggregated over all jobs, then the result can be
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profound, potentially creating millions of dollars of
extra node-hours for additional computations.

This work considers the topic of optimizing jobs on
supercomputers in the context of in situ visualization,
i.e., visualizing data as it is generated. Traditionally,
visualization on supercomputers has used post hoc
processing, i.e., simulations save their data to disk
and dedicated visualization programs later read that
data. However, the post hoc paradigm is increasingly
ineffective on supercomputers, as the ability to gener-
ate data on each new generation of supercomputer is
increasing much faster than the ability to store and
load data. In turn, I/O load times for visualization
are becoming unacceptably large, as are I/O times
for simulations performing frequent storage. In situ
visualization avoids this issue, since visualization can
occur without utilizing the file system. As a result,
in situ processing is increasingly being adopted on
leading-edge supercomputers, and has the potential to
become the dominant paradigm in the future [5]-[7].

Despite the growing preference for in situ visual-
ization, there is still much room for improvement in
terms of cost and efficiency. Regarding cost, in situ
visualization will, despite saving on I/0, still require
significant computational resources—in situ routines
sometimes use 10% or more of the simulation’s re-
sources. Of course, the exact proportion of time be-
tween visualization and simulation varies, based on
the nature of the simulation and the data it produces,
the type of visualization algorithm, the frequency vi-
sualization occurs (i.e., every cycle or less often), and



other factors. The second observation, that in situ vi-
sualization can be inefficient, is discussed in Section 3]

With this work, we avoid inefficiencies via a new
in situ visualization approach that is a hybrid of tra-
ditional in situ approaches. Our method specifically
considers an important technique for in situ visual-
ization: the generation of image databases of volume
renderings in the style of the Cinema project [8].
That said, our technique is applicable to any in situ
visualization setting that can be split into many small
tasks. Our findings indicate that we can regularly save
on the order of 7.5% of the combined simulation and
visualization time. We believe this speedup is very
impactful for this setting—the motivating research as-
sumption behind our work is that in situ visualization
will become ubiquitous on supercomputers, and that
optimizing its performance can potentially lead to
millions of dollars of reclaimed cycles.

2 RELATED WORK

This section is organized into four main areas of in situ
work: instantiations, hybrid approaches, approaches
focusing on cost savings, and elastic approaches (that
adapt resource usage over time).

In situ instantiations: There are many possible
instances of in situ processing, varying over division
of resources, access to data, and other factors [9].
That said, two instances are used most commonly. In
the first instance, sometimes referred to as inline in
situ, the simulation code and visualization routines
run on the same compute nodes, accessing the same
memory and alternating usage of a node’s cores. In this
setting, visualization routines are typically integrated
into the simulation via a library, and the simulation
code invokes this library whenever visualization is
required, effectively giving up control of the compute
resources until the visualization routine returns from
its function call. Popular products that use this form
include Catalyst [10], Ascent [11], and LibSim [12].
In the second instance, sometimes referred to as in
transit in situ, the simulation code and visualization
routines use distinct resources, which we refer to as
“simulation nodes” and “visualization nodes.” In this
setting, the simulation code typically sends its data to
the visualization nodes via network communication,
and the visualization nodes will keep its own separate
copy of the simulation data. Popular products that
use this form include Damaris [13], SENSEI [14], and
ADIOS [15]]. Our work is different than these as we
consider a hybrid between inline and in transit. We
compare to both of these approaches in our evaluation.

Hybrid in situ approaches: To date, there have
been few true hybrid in situ approaches that blend
between inline and in transit. Notably, Bennett et
al. [16] used a hybrid in situ approach for S3D combus-
tion simulations, using inline computations to reduce
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data such that modest in transit resources could be
used to complete analysis tasks. In another notable
work, Zheng et al. [17] introduced “PreDatA,” where
compute nodes could do “local processing” before
sending data to in transit nodes, although most of the
calculations took place on in transit nodes.

In situ approaches focusing on cost savings and
improving performance: Several works have focused
on addressing inherent inefficiencies with in situ pro-
cessing. With Flexpath [18], the authors focus on
saving transfer costs by reducing data movements
or optimizing the data placement based on network
topology and other performance influencing factors.
Damaris [19] considered the issue of variability, while
Kress et al. considered using in transit to reduce scala-
bility in two separate studies [20], [21]. Our work can
be viewed as a continuation of the Kress work, but
with adding support for rightsizing, and, to a lesser
extent, variability and overhead.

There are also several works on assessing resource
usage of inline in situ and in transit analysis and
visualization tasks, including quantitative formula-
tions [22], [23]]. Friesen et al. [24] discuss in situ exper-
iments for the two instances with the Nyx simulation
code and two in situ analysis suites while mainly
considering overall execution time performance. Other
works focus on general workflow optimization and
orchestration [25], [26] or sub-sampling of simulation
data to be processed on a local machine [27]. While
our approach explicitly optimizes for efficient usage of
node seconds, other works instead primarily focus on
minimizing the time to solution (e.g., by dynamically
allocating additional resources). Further, they use ei-
ther in transit or inline processing, but not both in a
hybrid fashion. In the case of in transit, rightsizing is
not considered although several works acknowledge
the problem.

Elastic in situ: There have been more works explor-
ing elastic in situ [28], i.e., resource adaptation over
the execution between simulation and visualization.
Goldrush [29] identified when simulation resources
were idle and used them to perform analysis tasks,
and Landrush [30] extended this idea to use idle cy-
cles on GPUs. Melissa [31] supports a design where
a server processes data from multiple independent
simulation groups that connect dynamically. Dirand’s
TINS system [32] approached the problem from a task-
based perspective, with resources being allocated for
analytics when such tasks emerged. LOOM [33] is a
framework for tightly coupled in situ visualization
that interweaves tasks to reduce idle times of simu-
lation threads. While our approach is also elastic, it
differs from these previous works in our focus: achiev-
ing cost savings by dynamically arranging execution
to minimize fundamental in situ inefficiencies.
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Fig. 1: Gantt diagrams of the two conventional in situ
processing schemes (@} [b) and our hybrid approach (d).

3 MOTIVATION

This section considers how in situ approaches suffer
from inefficiency. For background, in situ visualization
generally occurs within “mega-cycles,” which perform
both simulation and visualization. Specifically, a mega-
cycle consists of advancing a simulation from some
cycle n to another cycle n+m as well as visualizing the
data from the previous mega-cycle (i.e., cycle n). Fur-
ther, within a mega-cycle, there are two different types
of visualization tasks to perform: (1) tasks executing
independently from each other (e.g., rendering images
of a data partition), and (2) collective tasks executing
on all pieces of data at once (e.g., compositing partial
result into one final image). shows how these
tasks are scheduled within a mega-cycle for the three
in situ approaches using notional Gantt charts.

The remainder of this section is organized as fol-
lows: describes four types of inefficiency,
considers how the traditional in situ processing
types (inline and in transit) suffer from different kinds
of inefficiency, and describes the opportunities
for a hybrid approach to reduce inefficiency.

3.1 In Situ Inefficiencies

Inefficiencies with in situ processing stem from two
main categories: running in parallel and running on
separate resources. Further, each of these two cate-
gories has two distinct types of inefficiency.
The two inefficiencies from running in parallel are:
(i) Variability: certain operations execute for vari-
able amounts of time, and the nodes that run for
longer create a bottleneck that leads other nodes
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to sit idle. In particular, the cost of rendering
images varies significantly across nodes depend-
ing on the input data and rendering parameters
(e.g., transfer function for volume rendering), es-
pecially when using acceleration techniques like
empty space skipping [34]. The workload for the
visualization of a node’s data partition typically
also shifts as the simulation progresses.

(ii) Scalability: certain operations exhibit limited
scalability, and running them at scale causes
all nodes to run inefficiently. In particular, the
compositing of partial images (sub-images) into
one final image frequently exhibits poor scalabil-
ity [35].

These inefficiencies are related, but distinct. In par-

ticular, an algorithm can suffer from delays due to

scalability even if every compute node has the same
amount of work to perform. Further, an algorithm with
no parallel coordination is very scalable, but it can
suffer from delays due to variability if some compute
nodes have much more work to perform than others.
The two inefficiencies from running on separate
resources (i.e., dedicated visualization nodes) are:

(iif) Overhead: transferring data from the simulation
nodes to the visualization nodes causes delays in
multiple ways: the simulation must take time for
encoding and sending, the visualization routines
must receive and decode the data, and the net-
work has extra traffic.

(iv) Rightsizing: visualization tasks rarely exactly
align with the number of visualization nodes. If
there are too many nodes for the desired tasks,
then the visualization nodes sit idle. If there are
too few visualization nodes for the desired tasks,
then either the simulation nodes will need to
block and wait for them to complete or tasks need
to be dropped.

3.2 Traditional In Situ: Inline and In Transit

For inline (Fig. 1a), there are no visualization nodes, so
the only inefficiencies are from running in parallel are
(i) variability and (ii) scalability. That said, these two
inefficiency types are often significant for inline: since
all nodes participate in rendering and compositing the
effects of scalability and variability typically get worse
as scale increases.

In transit (Fig. 1b), provides an opportunity to save
on inline’s inefficiencies, but its use of separate re-
sources creates new inefficiencies. In terms of savings,
(ii) scalability inefficiency can be reduced by schedul-
ing collective tasks on the visualization nodes, which
are typically smaller in number than the simulation
nodes. Further, (i) variability can potentially be ad-
dressed by identifying simulation nodes with indepen-
dent tasks that have higher cost and reassigning some
of those tasks to visualization nodes. That said, in



transit can suffer from issues due to (iii) overhead and
(iv) rightsizing, for the reasons discussed in

3.3 Hybrid In Situ

Hybrid in situ (Fig. 1c) refers to using a mixture
of inline and in transit techniques. With this work,

we consider a specific form of hybrid in situ where
simulation nodes perform all simulation work as well
as some visualization work, while visualization nodes
only do visualization. At the beginning of a mega-
cycle, both simulation nodes and visualization nodes
tackle visualization tasks. At some point, simulation
nodes stop performing visualization tasks and resume
the simulation, while visualization nodes concurrently
process their visualization tasks.

This form of hybrid in situ creates opportunities for
addressing all four inefficiencies:

(i) Variability. The visualization nodes can take work
from the most overloaded simulation nodes, reducing
delays due to bottlenecking.

(ii) Scalability. Non-scalable tasks can be run on the
dedicated visualization nodes, saving time.

(iii) Overhead. Transfer times can be overlapped with
doing visualization work on the simulation nodes.

(iv) Rightsizing. The work distribution between simu-
lation and visualization nodes is dynamically adapted.
If there are few visualization nodes, then they will
receive only the work they can perform in their allotted
time and the remainder can be performed on the sim-
ulation nodes. If there are more visualization nodes,
then they can assume more work, and simulation
nodes resume the simulation more quickly.

The main challenge for hybrid in situ is the dis-
tribution of independent tasks and collective tasks to
simulation nodes and visualization nodes in a way that
minimizes these inefficiencies. Addressing this chal-
lenge is a main focal point of our proposed method.

4 HYBRID IN SITU METHOD FOR IMAGE

DATABASE GENERATION

This section describes our hybrid in situ method for
generating Cinema-style image databases. An image
database consists of a collection of n renderings, each
corresponding to a different camera position in our
case. Creating each image involves two types of opera-
tions: (1) rendering sub-images across nodes s € S (in-
dependent tasks I), and (2) compositing sub-images
to the final result (a collective task C'). This means that
there are |S|-n independent tasks and n collective tasks
in each mega-cycle.

Our hybrid in situ system addresses
the involved inefficiencies. Compositing suffers from
(i) scalability inefficiency, which we reduce by per-
forming it only with the generally significantly
lower number of visualization nodes. To address
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(iii) overhead, the system overlaps data transfer and vi-
sualization work. Rendering suffers from (i) variability
inefficiency, as the rendering cost heavily depends on
the data generated by simulation node s € S and
the camera configuration associated with task ¢ € 1.
This is addressed together with (iv)rightsizing by
distributing rendering tasks I such that idle time
across all nodes is minimized. For this, we first
estimate how long rendering and compositing will
take (Sec. 4.2), and then schedule visualization work

accordingly (Sec. 4.3).

4.1 System Overview

gives a sequential overview of our system.
Although our approach is not limited to a specific

rendering or compositing technique, we use volume
raycasting and direct-send compositing in our system.
A mega-cycle starts with visualizing the simulation
results from the previous iteration. First, we create an
estimation of induced cost on the simulation nodes s €
S (Sec. 4.2). Probing carries out and measures a subset
of the render tasks I, C I, to estimate their cost.
There is global synchronization between all nodes to
exchange probing timings (this is the only instance of
global synchronization in our approach). Compositing
time is predicted using a simple performance model.
This provides the basis for visualization load assign-
ment, which consists of two phases : first,
each simulation node is assigned to one visualization
node (N : S — V), and then the remaining render
tasks I} = I \ I] are distributed between a simulation
node s and its visualization node N(s). Simulation
data is accordingly distributed to the visualization
node that took over respective rendering tasks. Like-
wise, all render parts produced on s are moved to
its assigned N (s). These and all other data sending
and receiving operations are asynchronous both on
simulation and visualization nodes. This allows the
system to effectively hide induced latency, i.e., simu-
lation nodes can render while they are sending, and
also visualization nodes can process tasks while they
are receiving. After rendering, simulation nodes im-
mediately continue with the simulation. Visualization
nodes v € V perform classic direct send compositing
with image parts rendered by them as well as asso-
ciated simulation nodes s (i.e, with v = N(s)). Since
the images are composited sequentially, it allows us to
compress and write them to disk concurrently. Details
on the implementation of our system, the integration
into simulation codes, and design decisions can be
found in the supplemental material.

4.2 Render and Compositing Time Predictions

Render Probing. At the beginning of each mega-
cycle, all simulation nodes carry out probing render-
ing. For this, we randomly sample from all render
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Fig. 2: Sequence diagram of our system. Probing times are used as a basis to distribute the rendering load. Our
main objective is to minimize the inline visualization time and the upper bound for time spent rendering on
the visualization nodes is constrained by the combined time of rendering inline (including probing) and the
simulation time before the next visualization step. Compositing is done on visualization nodes only. All sub-
images created inline or during probing are sent to the visualization nodes.

tasks I of the respective nodes s in each mega-cycle
to select probing samples I, C I,. We then render
and measure timings for these on s as the basis to
predict the costs of the remaining tasks I;. We use
the arithmetic mean of the probing render times as
a runtime estimate (per render) of the respective data
partition. Typically, a random sampling of positions
of an arcball-style camera provides a good coverage
of the overall performance distribution [34]. During
probing, we also detect if rendering can be skipped by
checking whether the scalar value range in the data
partition of s always yields opacity values below a
threshold of 0.001 for the provided transfer function.
Compositing Time. For direct send compositing,
cost can be estimated as a function of nodes partici-
pating [35], [36]. In our case, we specifically consider
whether nodes produce images that contribute to the
final results (i.e., which were not skipped via opacity
5]

checking):
15 _ |5*)> _
B Bl

Here, |V*| (with V* C V) is the number of visu-
alization nodes actively participating in compositing
and a, 3,y are empirically determined constants on a
target system. |\S| is the number of simulation nodes,

1,05 <a—|—6-|V*|~ Fye VU

while |S*| divided by the total number of simulation
nodes represents the normalized amount of dataset
partitions that actually need to be visualized (i.e., the
ratio between skipped and non skipped partitions).

Since we determine o, 3,y empirically, a few mea-
surements of compositing times are needed before-
hand when running our system on hardware using
a different interconnect. We determine the constants
using the measurements and a non-linear least squares
function fit, which resulted in a normalized root-mean-
square error of 8.83% for our compositing time estima-
tion. To account for the uncertainty in the prediction,
we conservatively overestimate the time by 5% to
avoid blocking of the simulation nodes.

4.3 Visualization Load Assignment

Node assignment N : S — V. The estimated ren-
dering time from probing for the remaining images
I* = I, \ I, provide the basis for assigning each
simulation node s € S to one visualization node
v € V. For this, we iteratively assign the simulation
node with the highest cost to the visualization node
with the lowest accumulated cost until all nodes are
distributed.

Rendering task assignment A : I} — (s, N(s)).
Next, rendering tasks I that remain after probing on
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Fig. 3: Our load balancing scheme exemplified with
two simulation nodes (1, 2) and one visualization
node (3). Initially, all visualization load is assigned to
the visualization resource (A). If the estimated runtime
there exceeds the full cycle time on the simulation
resources (B), we iteratively shift render load to the
simulation node with the currently lowest total (antic-
ipated) runtime (C) until runtimes are evenly balanced
across all nodes (D).

a simulation node s are scheduled to be either tackled
by s or its assigned visualization node N(s). Our
main objective is to minimize the inline visualization
time in order to maximize the time that the simula-
tion node can use for simulation. Initially, we expect
all rendering to be done on the visualization nodes
(Fig. 3A). However, when aiming to avoid idle times,
there is an upper bound for time spent rendering and
compositing on the visualization nodes (Fig. 3B). It is
constrained by the combined time of three parts: (in-
line) rendering time on simulation nodes (influenced
by A;), the simulation steps before the next visual-
ization run on the simulation nodes, and the maxi-
mum probing time of the next visualization cycle. The
probing time is approximated from the current mega-
cycle. As long as the combined time predictions for
rendering and compositing on the visualization nodes
exceed the time of those three parts, we gradually shift
rendering load to inline on the simulation nodes. For
this, we consider the currently fastest simulation node,
randomly pick a corresponding image part that is cur-
rently not assigned to it, and transfer this task from the
respective visualization node (updating the respective
time estimates in the process, [Fig. 3(C). This balances
the render load across simulation and visualization

nodes (Fig. 3]D).

5 OVERVIEW OF EXPERIMENTS

Our experiments are organized into three phases.
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Fig. 4: Render time estimation error depending on the
number of probing images (total: 400). The data is
based on twelve random sequences.

o A parametric study evaluates different configu-
rations with varying amounts of work (number
of images in the image database) and resources
(number of visualization nodes).

o In-depth experiments are conducted to compare
our hybrid method with inline and in transit ap-
proaches for a selected configuration.

o A weak scaling study evaluates how changes in
concurrency affect cost.

The remainder of this section describes software,
hardware, and workload details.

Software: We used the Ascent [11] in situ frame-
work, which can generate Cinema [8] image databases.
Ascent implements parallel rendering by using vtk-
m [37] for shared-memory parallelism and MPI for
distributed-memory parallelism. Ascent natively does
inline and in transit, and we extended it to do our
hybrid method for this study. Further, direct-send com-
positing is implemented using the DIY2 [38] library.
Reproducibility details about the integration can be
found in the supplemental material. Ascent, VIK-m,
and Cinema are all open source, as are our extensions.

One important aspect to our software is how much
probing to perform. Prior to our experiments, we
conducted an analysis to identify a good trade-off
between performance and accuracy. This analysis used
an example case with 400 renderings. To calculate the
accuracy, we generated twelve random sequences of
camera positions (see [Sec. 4.2), and generated estima-
tions using the sequence with the first n € [4,200]
probings (Fig. 4). With this, we identified 15% of
the renderings to be a good compromise of schedul-
ing flexibility versus accuracy (yielding an error of
6.3% £ 1.3%), and use this ratio in all experiments that
generate 400 renderings.

Hardware: We ran all our experiments on TACC’s
Stampede2 supercomputer. We used SKX nodes that
feature Intel Xeon Platinum 8160 CPUs with 48 cores
on two sockets (24 cores/socket). The CPUs support
two hardware threads per core, adding up to a total of



96 threads per node. Typically, we ran 6 MPI tasks per
node with 16 OpenMP threads per task.

When comparing across inline, in transit, and hy-
brid, we fixed the number of simulation nodes and
considered different numbers of visualization nodes.
This is crucial for comparability as the number of
simulation nodes impacts the domain decomposition
of the simulation, which not only influences the simu-
lation itself but also the rendering tasks.

Workloads: A workload consists of running a sim-
ulation code for some number of mega-cycles, as well
as generating an image database for each mega-cycle.
We determine the number of simulation steps in all
mega-cycles by running the simulation in intervals of
120 seconds of wall clock time before invoking the in
situ visualization. For image databases, we generate a
Cinema database of 400 volume renderings per visual-
ization cycle using an orbital camera with regular spac-
ing of the angles and a single zoom level. The images
have a standard resolution of 800 x 800 pixels, unless
noted otherwise. Experiments with larger image res-
olutions can be found in the supplemental material.
We use front-to-back volume raycasting accelerated by
early ray termination and block-based empty space
skipping. Finally, we employed supersampling during
the weak scaling phase.

Two simulation codes were used throughout our
study. The first two phases used Cloverleaf3D [39], a
3D Lagrangian-Eulerian hydrodynamics benchmark.
The third phase used Nyx [40], a massively parallel
code for cosmological hydrodynamics simulations as
a real world example. We visualize the energy field
for Cloverleaf3D and the density field for
Nyx (Fig. 7). While Cloverleaf3D uses regular grids,
Nyx uses block structured adaptive mesh refinement
with AMReX [41]. The simulations also differ in how
they evolve over time. The Cloverleaf3D simulation
starts with two initial energy fields in opposite corners
of its domain, and these two energy fields extend over
the course of the simulation until they visually fill
the whole domain. The volume rendering’s transfer
function treats low energy regions as fully transpar-
ent, resulting in imbalanced work from empty space
skipping. As the simulation continues this effect fades,
but rendering imbalances emerge due to early ray
termination. With Nyx, the simulation starts with an
initial random seed of dark matter particles distributed
across the whole domain. Over the course of the simu-
lation, the particles attract each other to form clusters,
creating empty spaces as a side effect. As a result, data
blocks become less active over time.

6 RESULTS

Our results are organized into parametric

study (Sec. 6.1), in-depth experiments (Sec. 6.2),
and weak scaling experiments (Sec. 6.3).

6.1 Parametric Study

In our first phase, we compare different combinations
of workload (i.e., varying image count) and resources
(i.e., number of visualization nodes). This phase con-
sisted of 36 experiments, as a cross product of four
image database sizes (81, 144, 256, and 400 images)
and nine in situ configurations. Eight of the in situ
configurations came from varying the number of vi-
sualization nodes (1, 2, 4, and 8) for both hybrid and
in transit. The ninth configuration was running inline.
Each configuration ran Cloverleaf with eight simula-
tion nodes. Four of the 36 experiments in this phase are
investigated in more detail in Further, results
of a similar study using different image resolutions
instead of varying image counts can be found in the
supplemental material.

compares the efficiency of our hybrid ap-
proach with inline and in transit in a 4 x 4 matrix. The
lower left of this matrix has the least work per visu-
alization node (81 images and 8 visualization nodes),
while the upper right of this matrix corresponds to
the most work per visualization node (400 images
and one visualization node). Our hybrid technique
has the most opportunity for cost savings when there
is more work, since there is more (i) variability we
can reduce. Further, when the amount of work per
visualization node becomes too low, then these nodes
will have to sit idle while the simulation advances,
making (iv) rightsizing impossible. The fact that the
probing step in hybrid conceptually pins some work
to the simulation nodes contributes to the issue.

Our results confirm the importance of sufficient
work per visualization node for the success of our
technique. Eight of the sixteen configurations ran
fastest with our hybrid method. The best savings were
achieved in the “upper right” configuration (most
work per visualization node), with savings decreas-
ing as the number of visualization nodes increased
or the number of images decreased. The remaining
eight configurations ran faster with either inline (seven
times) or in transit (one time). The worst performance
of our hybrid approach occurs in the “lower left,” with
performance increasing as the number of visualization
nodes decreased or the number of images increased.
Finally, for the configurations where our hybrid ap-
proach performs poorly, inline’s strong performance
may fade at higher scale, as inline tends to perform
worse at larger scales as can be seen in [Sec. 6.3

Some of the sixteen configurations show our tech-
nique’s flexibility in rightsizing. In particular, our hy-
brid technique took approximately the same amount of
time to render 256 images whether it was assigned one
visualization node or two visualization nodes. This is
because our algorithm was able to adapt the assign-
ments to do more work on the simulation nodes when
there was one visualization node and more work on
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Fig. 5: The columns in the 4 x 4 matrix correspond to
the work (i.e., number of images rendered), while the
rows reflect the resources (i.e., number of visualization
nodes). Each of the 16 stacked bar charts compares
our hybrid in situ method with inline and in tran-
sit. The colors correspond to different activities, and
the heights for each color indicates how much time
was spent (on average) per mega-cycle. Broken bars
indicate higher y-values. As the inline configuration
does not use visualization nodes, a single inline run is
repeated along each column. There are small variations
in render times between the techniques for some con-
figurations that we attribute to our use of 6 MPI ranks
per physical node and hyper-threading, resulting in
slightly different utilization of physical cores.

the visualization nodes where there were two. The cost
is the same across the two experiments because both
have the same savings on scalability and variability,
overheads do not increase, and (critically) rightsizing
is maintained for both. In all, this demonstrates that
our method yields rightsizing in fairly wide ranges of
configurations, while in transit is only able to achieve
this in the rare case when all conditions align.

Finally, when the work per visualization node be-
comes extremely high, our method’s performance can
resemble a pure inline approach, and thus be subject to
(i) variability. We did observe this in practice (see dis-
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cussion in[Sec. 6.2]on unavoidable idle from variability
at mega-cycle 0), but the effect was small enough that
our method was still the most efficient in comparison.

6.2

Our in-depth experiment considered a single work-
load that was selected based on the results of the
parametric study (Sec. 6.1). We ran Cloverleaf3D for
14 mega-cycles on eight simulation nodes, with a grid
resolution of 384% (192% per node). For the image
database, we generated 400 images in each mega-
cycle. We compare four in situ approaches: inline (8),
hybrid (8+2) with two dedicated visualizations ranks
(i-e., 10 nodes total), as well as in transit (8+4) and
in transit (8+8) with 4 and 8 dedicated visualization
ranks, respectively. shows volume renderings
from these experiments, as well as Gantt charts for
each in situ approach.

Our hybrid technique was the most efficient ap-
proach, requiring the least node seconds in total.
It completed the simulation and visualization tasks
in 2530s using 10 nodes (25.3Knode-seconds), while
the inline configuration took 3576s using 8 nodes
(28.6Knode-seconds—13.1% more). The in transit
configuration took 3350s with 12 nodes (40.2Knode-
seconds—58.9% more) and 1947s with 16 nodes
(31.2K node-seconds—23.1 % more). The flexibility of
hybrid enabled it to do better in terms of the four types
of in situ inefficiency (see[Sec. 3.T), despite introducing
(iii) overhead for transfer (pink) in comparison to
inline, and also exhibiting some (i) variability issues
due to sub-optimal work assignments (black).

For inline, the effects from (i) variability can be
seen in the high proportion of idle time (gray) in simu-
lation ranks 1 through 6 while simulation ranks 0 and 7
are rendering (green). These effects are significant from
mega-cycles 0 through 4, with only two corners of the
volume actually contributing to the volume rendering.
As the simulation evolves, this improves when all
nodes engage in rendering work in mega-cycles 5
through 8, but inefficiencies re-emerge in mega-cycles
9 through 14 due to early ray termination (node 7 in
particular). Our hybrid technique addresses variability
by adapting the assignments to visualization ranks
accordingly. Inline also demonstrates (ii) scalability
issues during the compositing phase (yellow). Com-
positing costs were 160 node-seconds per mega-cycle
with 8 simulation ranks participating for about 20s,
while hybrid only required 100 node-seconds with just
2 nodes being involved for 50s.

Both in transit configurations perform quite poorly
in comparison. Hybrid reduces (iii) overhead ineffi-
ciencies with respect to in transit both by overlapping
data transfer with visualization work and only trig-
gering it when simulation nodes cannot process all
visualization work themselves. However, for both in

In-depth Experiments
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Fig. 6: In-depth experiment of 14 mega-cycles of Cloverleaf3D simulation and Cinema database generation.
Images at the top show volume renderings from every other mega-cycle. The remaining rows show Gantt
charts for inline, hybrid, and in transit configurations. The charts are colored to indicate the activity on a node,
including two types of idle. Light gray depicts idle caused by variability while dark gray shows idle times
caused by prediction errors in our hybrid approach. Although in transit (8+8) has an overall shorter completion
time, hybrid is more efficient in terms of node seconds overall.

transit cases, the major issue is (iv) rightsizing—one
configuration has too few visualization nodes and the
other has too many. With too few visualization nodes
(4 visualization nodes, 12 total), the rendering tasks
cannot be completed in time, blocking the simulation
nodes. This results in significant idle time (gray) on
the simulation nodes, especially after mega-cycle 4.
With too many visualization nodes (8 visualization
nodes, 16 total), there are not enough rendering tasks
to occupy the visualization nodes. This again results in
significant idle time, although this time on the visual-
ization nodes and before mega-cycle 4. Together, these
two configurations demonstrate the difficulty in right-
sizing in transit resources—whether too few or too
many visualization resources, the result is idle time. In
contrast, hybrid achieves rightsizing over a variety of
visualization workloads by dynamically assigning ren-
der tasks. In early mega-cycles, the visualization ranks

can almost exclusively handle the rendering tasks,
allowing simulation ranks to focus on the simulation.
When the cost of rendering tasks increase (around
mega-cycle 5), work is shared between visualization
and simulation ranks such that they complete their
respective tasks right as the mega-cycle ends.

Although our hybrid approach was able to im-
prove efficiency overall, this experiment also demon-
strates some limitations in highly unbalanced scenar-
ios. Specifically, the variability is extreme in mega-
cycle 0: simulation nodes #0 and #7 have all the inline
visualization work and the others have none. For this
level of imbalance, the ratio between visualization
nodes and simulations, and the amount of rendering
work compared to the length of the mega-cycle, hybrid
cannot schedule tasks that will fully prevent idling on
simulation nodes #1-#6.



Fig. 7: Renderings of the Nyx simulation data.
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Fig. 8: Nyx weak-scaling results. For inline, composit-
ing times grow with higher thread counts, while ren-
dering gets relatively faster. For hybrid, overhead and
render times grow, as well as idle times caused by
prediciton errors. In transit runs are not considered
since their results are substantially worse than hybrid

or inline due to the rightsizing problem.

6.3 Weak Scaling

Finally, we consider a weak scaling study with the
Nyx simulation code, comparing our hybrid approach
against pure inline. Based on our parametric study
(Sec. 6.1), we aimed for a visualization to simulation
resource ratio of % = 0.2 and used a data
partition size of 32° per simulation rank. The ran-
domly seeded dark matter particle count was adapted
accordingly. We ran Nyx with nine different node con-
figurations on up to 19 200 logical cores. Configuration
details are listed in sample renderings are
shown in [Fig. 7] (more can be found in the supplemen-
tal material). The node configurations result from the
constraints that the MPI task count needs to be divisi-
ble by 6 to fully occupy the nodes, and the simulation
task count needs to correspond to the number of (uni-
form) data partitions. We increased supersampling in
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TABLE 1: Node Configurations for Nyx on Stampede2.

Nodes  Logical Sim.  Vis. Factor Grid Super-
cores ranks  ranks size  sampling
2 144 8 1 0125  64® 1x1
6 576 27 9 0.333 96> 1x1
13 1248 64 14 0219 1283 2x2
25 2400 125 25 0200 1603 3x3
43 4128 216 42 0.194 1923 4x4
69 6624 343 71 0207 2243 4x4
103 9888 512 106 0207 2563 4x4
146 14016 729 147 0202 2883 4x4
200 19200 1000 200 0200 3203 4x4

the volume raycaster for higher node counts to balance
out the render load decrease at higher concurrencies
that is caused by our constant image resolution. The
run was interrupted after 1 hour of execution (hybrid)
respective 1 hour 20 minutes (inline). As discussed
above, we allowed the inline case more processing
time to get a similar number of full cycles as in the
hybrid case.

The performance summaries plotted in [Fig. §show
that the four types of inefficiency change as concur-
rency increases. The most obvious effect is with scal-
ability. The inline approach devotes more and more
time to compositing (yellow color) due to poor scal-
ability, while our hybrid approach is able to reduce
compositing time significantly. That said, as can be
seen in[Fig. 8] the compositing time increases with con-
currency for our hybrid technique as well, as the num-
ber of visualization nodes increases proportionally and
begin to exhibit their own scalability inefficiency. An-
other important effect is with overhead, which can be
seen in the increasing transfer/copy times (pink) for
very high core counts. With respect to rightsizing, our
algorithm was able to make “rightsized” assignments
for visualization and simulation work (i.e., all tasks
should finish a mega-cycle at the same time), but
these assignments did sometimes lead to idle resources
because of mispredictions (black color). That said, the
amount of misprediction does not appear to change
significantly as concurrency increases. Finally, variabil-
ity effects (gray color) increase slightly for very high
concurrencies for our hybrid method and stay at a sim-
ilar level for inline visualization. This effect has mainly
two reasons. First, the variability in data decrease at
higher concurrencies since the simulation progresses
slower with respect to wall-clock time and we use the
same amount of time per mega-cycle (more details and
example renderings can be found in the supplemental
material). Second, overall rendering times are getting
smaller, since each block contributes fewer fragments.

In terms of actual savings, our hybrid approach
had lower cost for all concurrencies, although these
savings varied (144 cores: 6.9%, 576: 2.8%, 1248, 9.0%,
2400: 8.5%, 4128: 2.0%, 6624: 6.9%, 9888: 10.2%, 14016:
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Fig. 9: Differences in cost between hybrid and inline
as a function of concurrency. The differences are cal-
culated relative to the inline run. For example, the
total cost for the 2400 core inline experiment was 26.5K
seconds, of which 4310s were spent compositing. The
corresponding hybrid run took 1700 s for compositing,
representing a savings of 2610s, which is 10% of the
total inline run. In turn, the yellow (scalability) curve
has a point at (2400, -10%). The overhead curve (pink)
considers both transfer costs and reduced performance
in rendering due to the overlap with transfers.

9.8%, 19200: 11.0%). While the savings are fairly con-
sistent, the factors behind them are changing. These
changes can be seen in As concurrency in-
creases, scalability savings are growing fast enough to
offset additional overhead costs and reduced savings
in variability.

7 CONCLUSION AND FUTURE WORK

The premise of this work was that a hybrid in situ
visualization approach had the potential to address
fundamental inefficiencies in a way that the traditional
inline and in transit techniques could not. That said, it
was merely our hypothesis that the savings we could
achieve would be significant—the magnitude of the
resulting savings were unknown and required running
experiments for evaluation. We find the results to be
overall very promising. Compared to inline, we were
able to achieve a cost savings for the majority of the
configurations we considered. Of the remaining con-
figurations, it was often infeasible for a hybrid method
to achieve cost savings, as there was not enough
work to justify the extra visualization nodes. These
configurations can be detected ahead of time and
eliminated (by requesting fewer visualization nodes),
which would make our hybrid method superior at a
much higher rate. Overall, we felt one of the strongest
elements of our design was the ability to adapt to dif-
ferent ratios of work (images to render) and resources
(extra visualization nodes), meaning that it should be
able to operate robustly in production settings.
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We also were enthused by our comparisons with in
transit processing. While Kress et al. [21] was the first
to show that in transit could save on scalability ineffi-
ciency enough to offset overhead, their approach was
significantly more susceptible to rightsizing effects. In
other words, they achieved maximum savings when
their resource allocation had rightsizing harmony, but
any deviation from that harmony immediately began
reducing those savings. Our approach, however, is
able to achieve rightsizing over a wide variety of con-
figurations, and therefore maintain maximum savings
much more often.

Although the actual savings in cost may appear to
be modest (on the order of 7.5%), we feel this research
has a chance to be very impactful—small speedups
for ubiquitous operations on expensive devices add
up to a large impact overall. For example, if all the
jobs on a $200M supercomputer utilized our in situ
visualization approach, then 7.5% savings would be
the equivalent of $15M of extra compute power over
the life of the machine. Of course, not all jobs will
use our approach, and the benefit reduces proportion-
ally. That said, simulations are increasingly adopting
Cinema to generate image databases, thus increasing
the need for our approach and increasing its potential
benefit. However, we acknowledge that the design is
somewhat complex, and this complexity will probably
need to be hidden behind production software, such
as we have done with Ascent.

Overall, our approach exhibits two main param-
eters: (i) the ratio of visualization nodes and (ii) the
ratio of work items used for probing. As a rough
guideline, (i) the ratio of visualization nodes should
be chosen such that it is lower than the expected
ratio of visualization costs regarding the simulation
costs, whereas for (ii) the number of probing items
needs to be sufficient to adequately reflect the total
cost of work items. Too many visualization nodes
means they cannot be efficiently occupied with work
throughout, and too many probing items limits the
flexibility regarding work distribution. In our current
approach this needs to be set manually, but could
also be determined automatically with a small prior
test run (subject to future work). As discussed in the
related context of rightsizing above, we consider a
main strength of our approach to be its flexibly in
adapting to different settings, yielding robustness in
the sense that execution is efficient for a range of
parameter settings.

Our approach should generalize to other visualiza-
tion or analysis tasks that can be split into fine gran-
ular sub-tasks for dynamic distribution. The image
database generation considered in this work demon-
strates benefits for a combination of independent tasks
(the rendering of images) as well as reduction (the
compositing of partial results), which is a common



scheme for various distributed visualization methods.
In general, we anticipate that our approach would
particularly be beneficial for computation-heavy tasks
with heterogeneous costs and a high degree of par-
allelism, potentially also requiring communication be-
tween nodes. Visualization techniques using interme-
diate representations (e.g., explicit isosurface render-
ing) could be approached in two different ways: either
the intermediate representation could be generated
on the simulation node and then this representation
would be distributed instead of the data, or the data
partition could be further subdivided and a work item
would comprise all operations—comprising interme-
diate representation generation and rendering—on a
respective sub-partition of the data. We also expect
our hybrid approach to profit at scale for visualiza-
tion techniques that need additional communication
(e.g., passing around rays for path tracing). We aim
to investigate further visualization scenarios with our
approach in future work.

We also see potential to further refine our approach
for image database generation. Here, we aim to fo-
cus on improving the accuracy of cost predictions
via importance sampling for probing and advanced
compositing and simulation time predictions.
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Supplemental Material

This supplemental material to the paper “A Hybrid
In Situ Approach for Cost Efficient Image Database Gen-
eration” provides additional results, renderings, and
implementation details. presents further results
complementing the parametric study found in[Sec. 6.1]
of the paper with a study on the impact of chang-
ing the image resolution used for rendering.
provides additional renderings of the Nyx simulation
data, showing and discussing the changes in variabil-
ity at higher scales that are observed in [Sec. 6.3 of the
paper. Finally, [Sec. (| provides further implementation
details on the integration into the simulation codes as
well as the integration of our hybrid approach into the
Ascent library for reproducability. Also, background
information on the used libraries and APIs is provided

to complement [Sec. 4 of the paper.

APPENDIX A
IMAGE SCALING RESULTS

In this section, results of an additional parametric
study similar to the one presented in of
the paper are shown. The experiment consisted of
27 similar experiments, but in contrast to the para-
metric study in the image resolution was
changed instead of the image count (which remained
at 400 images). Three different resolutions were used
(800%px, 1100%px, and 1400%px), where the latter two
roughly correspond to doubling, respectively tripling,
the pixel count of the 800%px default configuration.

This experiment series demonstrates the impact
of higher render loads when using a larger image
resolutions that might be desirable in some visual-
ization scenarios, e.g., where fine detail are impor-
tant. The results are shown in where the
columns represent the different resolutions while the
rows correspond to the number of visualization nodes
(i.e., the visualization resource ratio). As in our set of
experiments examining a varying number of images,
the inline case was run only once per configuration
since it does not use dedicated visualization resources.
When compared, both experiment series show similar
results, while the distance of our hybrid technique
to inline even increases for higher resolutions in the
cases where there is more work per visualization node
(upper half).

This series underlines our previous conclusion that
our method yields rightsizing in fairly wide ranges of
configurations, while in transit is only able to achieve
this in the rare case when several conditions align.

Image resolution in pixels (400 images total)
800 x 800 1100 x 1100 1400 x 1400
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Fig. A.1: The columns in the 3 x 4 matrix correspond to
the work (i.e., image resolution), while the rows reflect
the resources (i.e., number of visualization nodes).
All configurations run Cloverleaf3D with 8 simulation
nodes and generate a Cinema databases. Each of the
12 stacked bar charts compares our hybrid method
with inline and in transit. The colors correspond to
different activities, and the heights for each color in-
dicate how much time was spent (on average) per
mega-cycle. Broken bars indicate higher y-values. The
inline configuration does not use visualization nodes,
a single inline run is repeated along each column.
There are small variations in render times between the
techniques for some configurations that we attribute to
our use of 6 MPI ranks per physical node and hyper-
threading, resulting in slightly different utilization of
physical cores.
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Fig. B.1: Renderings of the Nyx simulation data
for selected mega-cycles (columns) and scaling lev-
els (rows). Data heterogeneity between partitions
decreases at larger sizes due to slower simulation
progress. The same wall-clock time intervals are used
to invoke the visualization.

APPENDIX B
RENDERINGS OF NYX SIMULATION DATA

shows renderings of the Nyx simulation data
for mega-cycles 0, 6, 12, and 18 (columns), for different
sizes of our weak-scaling study of the paper).
The data set resolutions (rows) correspond to the runs
using 4128, 9888, 14016, and 19200 logical cores. All
runs call the visualization after a fixed wall-clock time
interval of 120 seconds.

As can be seen, the simulation progresses more
slowly at larger concurrencies, leading to almost no
visible changes in the data for the 320% run. This effect
causes less variation in the data between partitions and
leads to similar, comparably fast render times due to
early ray termination and no empty-space skipping.
For our hybrid approach, the homogeneity in render
times is less favorable, since it leads to less variability
that can be “exploited” by our technique. This effect
is also reflected in the variability curve in in the

paper.

APPENDIX C
IMPLEMENTATION DETAILS

As a basis for our hybrid in situ approach, we use
the Ascent [11] framework that supports a wide range
of data filters and several parallel scientific rendering
algorithms using the vtk-m [37] toolkit. Furthermore,
Ascent supports distributed memory and comes inte-
grated with a couple of simulation codes. So far, we
only use CPUs for both simulation and visualization in
our experiments. A potential future extension to GPUs

would be possible since they are already supported by
vtk-m.

To make our hybrid approach feasible and keep
the overhead to a minimum, we parallelized compu-
tations and use asynchronous communication wher-
ever possible. MPI is used to distribute tasks among
nodes, supporting running multiple MPI tasks per
node. Generally, synchronizations are avoided if pos-
sible and if they are necessary, they are only applied
to the smallest sub-group of ranks. All data sending
and receiving operations are asynchronous both on
simulation and visualization nodes. An MPI buffer is
used for sending the render parts from simulation to
visualization nodes.

We use OpenMP for shared memory parallelization
of the simulation as well as the rendering tasks on the
nodes. Ascent supports the generation of Cinema [8]
image databases that we use in our approach. In our
experiments, we generate volume renderings of the 3D
scalar fields generated by the simulations. We perform
volume rendering, this is done using an arcball-style
camera, i.e., we choose camera positions on a sphere
around the data set using pre-defined zoom levels and
facing at the center of the dataset. For acceleration, we
employ block-based empty space skipping and early
ray termination.

For our tests with volume rendering on regular
grids, we use the Cloverleaf3D [39] simulation, a 3D
Lagrangian-Eulerian hydrodynamics benchmark. As-
cent comes with a Cloverleaf3D version featuring an
integration of the framework. As a second real world
example we use Nyx [40], a massively parallel code for
cosmological hydrodynamics simulations. Nyx uses
AMReX [41], a software framework for block struc-
tured adaptive mesh refinement (AMR).

In the following, we first describe the integration
of our hybrid approach into the simulation codes and
then into the Ascent framework. Refer to for an
overview of the runtime process in form of a sequence
diagram. All frameworks as well as our modifications
are open source: Ascent Vtk—h Nyx AMReX

C.1

The integration of our system into the simulation codes
is minimally invasive. Besides the integration of the
Ascent in situ framework (i.e., mainly coupling of the
simulation data), we split the MPI communicator into
a simulation and a visualization group based on a
user-defined split factor. The MPI ranks that belong to
the simulation group proceed regularly with the simu-
lation and start visualization once the insitu condition

Integration into the Simulation Codes

1. https:/ / github.com /vbruder/ascent-1
2. https:/ /github.com/vbruder/vtk-h

3. https://github.com/vbruder/Nyx

4. https:/ / github.com/vbruder/amrex-1
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triggers, i.e., a user-defined time interval has passed or
a number of simulation steps have been processed. We
use time intervals to determine the simulation steps
we want visualize in our experiments and then use
the simulation step number to trigger visualization for
a better comparability across runs..

The visualization is started by calling Ascent with
the simulation data of the respective rank, the simu-
lation time that we use as an estimate of the time for
the next simulation block, and a set of user-defined
actions. The latter include the visualization setup: fil-
ter pipelines, the scenes to be rendered (e.g., volume
rendering including transfer function, Cinema config-
uration, etc.) and the probing setup for our hybrid
approach such as the split factor between simulation
and visualization ranks and the amount of renders
used for runtime probing.

The visualization ranks wait for incoming data and
perform visualization immediately after receiving data
from the simulation ranks. In contrast to the simu-
lation ranks, Ascent is called without a data set but
the same configuration. Synchronization between the
simulation and the visualization ranks only happens
inside Ascent during the exchange of probing times.

C.2 Integration into Ascent

We extend the Ascent in situ framework by adding
flexible in transit capabilities including a modified
compositing that can work solely on visualization
resources. Further, we extend Ascent to handle our
hybrid approach. This primarily includes a probing
step in which we distribute the rendering load across
the MPI ranks. At the beginning of processing the
visualization in Ascent, we first split the MPI com-
municator that is passed on by the simulation and
includes all ranks into a simulation and a visualization
communicator. For this, we use the same split factor as
in the simulation code to exactly reproduce the split.
A pseudo-random sequence is generated to select the
images to be used for probing. Naturally, the same
sequence is generated on all ranks.

All simulation ranks then proceed with the probing
run, i.e. by rendering the subset of randomly selected
images. After rendering, the images’ pixel and depth
values are encoded using simple run-length encod-
ing. The resulting render times are gathered on all
MPI ranks to determine the load distribution and the
assignment of the simulation ranks to the visualiza-
tion ranks. Then, the simulation ranks asynchronously
send their simulation data to their assigned visualiza-
tion ranks, where the respective subset of images is
rendered in transit on arrival of the data. Meanwhile,
inline rendering and encoding of the remaining images
is performed on the simulation ranks. This happens in
batches to facilitate asynchronous sending of the ren-
der parts to the respective visualization ranks where

decoding and compositing happens once all parts are
rendered or received. After sending their last render
part, the simulation ranks return to compute the next
simulation steps.

The visualization ranks receive the image parts of
their assigned simulation ranks and use them with
the ones rendered themselves for compositing. We use
direct send compositing that is integrated in Ascent
using the DIY2 [38] library. Ascent uses direct send
since it has to support the worst case scenario, i.e., un-
structured meshes that fit together like puzzle pieces.
Once the final image is composited, we compress it as
a PNG and write it to disk on one of the visualization
ranks. We use a producer-consumer approach to write
out the compressed PNG images in parallel. After the
last image is written to disc, the visualization ranks
return to the simulation process and directly proceed
with the next visualization cycle.
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