
Mesh Generation From Layered Depth Images
Using Isosurface Raycasting

Steffen Frey, Filip Sadlo, and Thomas Ertl

Visualization Research Center, University of Stuttgart

Abstract. This paper presents an approach for the fast generation of
meshes from Layered Depth Images (LDI), a representation that is inde-
pendent of the underlying data structure and widely used in image-based
rendering. LDIs can be quickly generated from high-quality, yet compu-
tationally expensive isosurface raycasters that are available for a wide
range of different types of data. We propose a fast technique to extract
meshes from one or several LDIs which can then be rendered for fast,
yet high-quality analysis with comparatively low hardware requirements.
To further improve quality, we also investigate mesh geometry merging
and adaptive refinement, both for triangle and quad meshes. Quality and
performance are evaluated using simulation data and analytic functions.

1 Introduction

Raycasting is available for a wide range of higher-order volumetric data repre-
sentations, including classical polynomials [1] or radial basis functions [2] from
smoothed-particle hydrodynamics, which are not defined on grids. Cell-based
fields featuring piecewise polynomial representation resulting from higher-order
finite element or discontinuous Galerkin simulations can also be visualized directly
using raycasting [3]. Rendering this data interactively on a desktop computer
can be impracticable due to storage and computational costs. Layered Depth
Images (LDI) [4] of isosurfaces can be used as a replacement for the actual data to
drastically lower hardware requirements, e.g., for preview rendering. An LDI is a
view-dependent representation that stores several depth values per pixel and can
easily be generated with slight modifications of existing raycasting code. However,
common LDI rendering methods (warping or splatting) suffer from quality or
performance issues in a number of scenarios, and many analysis operations (e.g.,
distance measurement) are not applicable. Our integrated technique allows for
quick generation of LDIs and subsequently for fast extraction of a mesh from one
or more LDIs to serve as a high-quality stub for interactive rendering (Sec. 3).
These meshes can further be enhanced by surface-based refinement (Sec. 4) with
advantages over traditional volume-based techniques (e.g, using octrees), and
we also present a technique for the geometric merging of meshes from several
LDIs (Sec. 5). In contrast, extracting meshes directly from the original data
using common mesh-based isosurface extraction tools (like Marching Cubes [5],
dual contouring [6], or others [7]) depends on the structure of the data, and

2 Steffen Frey, Filip Sadlo, and Thomas Ertl

2x

2x

4x

2x

2x

4x 2x4x X

Z

s0
s3

s1

s2

s4

(a)

y

x
(x,y)

1 s1

s2 (x+1,y)

s3

1 s4

(x,y+1)

s8

1 s9

(x+1,y+1)

s5

1 s6

s7

s0

... ...

(b)

x

`

s3

s0

s4

z

x
(x,y) (x+1,y)

e(s4, x, y)

e(s3, x, y)

e(s0, x+1, y)

(c)

Fig. 1. (a) Generation of LDIs from different directions. (b) For each LDI
independently, sample s0 at (x, y) potentially forms a quad with samples from
(x + 1, y), (x, y + 1), and (x + 1, y + 1). (c) Normal-based depth prediction for s0
to find its best match (in this case s3), normals by black arrows.

often cannot be applied directly. Further, the resampling of volumes either leads
to inaccurate results or, as in the case of direct rendering, is very expensive in
terms of computation time and memory. LDIs allow for the decoupling of mesh
generation and the actual data representation. They provide a view-dependent
region-of-interest selection that is represented in high quality. The compact rep-
resentation of LDIs, their fast generation, as well as the quick extraction and
rendering of meshes therefrom make our approach useful in many scenarios. For
instance, they can be used for local or remote preview or in situ visualization.

2 Related Work

For isosurface extraction from higher-order data, quad mesh generation tech-
niques [8], contouring [9], and approximate isocontouring [10] have been proposed.
For uniform grids based on trilinear interpolation, classical Marching Cubes
(MC) [5] and variants are most popular (e.g., dual MC [11] among others [12,13]).
MC adaptations were further introduced for tetrahedral meshes [14, 15], also
supporting adaptive reconstruction [16, 17]. However, in contrast to our tech-
nique, they refine the volume and not the surface directly, and preventing cracks
requires additional effort. Other approaches use Voronoi diagrams [18], advancing
front techniques [19], and meshing from point clouds [20]. For combining dis-
joint meshes, as done with our approach (Sec. 5), several approaches have been
proposed, including sewing [21], volumetric methods [22], zipping overlapping
meshes [23], laser range images from different views [24], and polygon trian-
gulation [25]. Various techniques have been presented for rendering cell-based
higher-order fields [26], including a raytracer for cut-surfaces [27] and point-based
visualization [28]. LDIs represent one camera view with multiple pixels along each
line of sight [4], their size growing linearly with the observed depth complexity
of the scene. In volume rendering, layer-based representations (like LDIs) have
been used to defer lighting or transfer function changes (e.g., [29–31]).

Lecture Notes in Computer Science 3

(a) 1d:x (b) 2d:x (c) 2d:y (d) 2d:x,y (e) 0.5,51k (f) 0.9, 38k (g) 64 (h) 128

(i) 3d:x (j) 3d:y (k) 3d:x,y (l) 3d:x,y,z (m) 1,34k (n) 1b,31k (o) 256 (p) 512

Fig. 2. (a)–(d),(i)–(l) Preview meshes of the KleinBottle data with a resolution
of 128 × 128 per direction, showing the differences in trimming for the same
r = 0.5 but a varying set of directions (subcaption depicts the total number of
directions as well as the ones that are rendered). (e),(f),(m),(n) Varying r with
meshes from x, y and z-direction colored in red, yellow and green respectively
(subcaption depicts r (plus additional boundary trimming) and the number of
triangles). (g),(h),(o),(p) Barth data set with r = 0.5 for x, y, and z-directions and
an increasing number of samples per direction, resulting in higher quality with a
higher number of triangles: 642 : 24k, 1282 : 136k, 2562 : 625k, 5122 : 2646k.

3 Mesh Generation and Trimming

For LDI generation, we restrict ourselves to raycasting with parallel projection in
the following for the sake of simplicity (perspective projection works accordingly
with slight adjustments). Depth and gradient information are stored not only
for the first, but for all hits occurring along a ray (Fig. 1(a)). This is the only
required, typically straight-forward, modification to existing raycasting codes.

To form a quad, every sample (s0, located at (x, y)) selects one sample (its
best match) each from the right (x + 1, y), top (x, y + 1) and the top right
(x + 1, y + 1) image position (Fig. 1(b)). The best match is determined by
depth predictions based on normals. In detail, s0 estimates the depth value
e(s0, x+a, y+ b) at the image position of the neighbor set (a, b ∈ {0, 1}, (x+ 1, y)
in Fig. 1(c)). Likewise, all candidate samples s (s3 and s4 in Fig. 1(c)) estimate
a depth value e(s, x, y) at image position (x, y). The best match for s0 is then
the sample s from the respective neighbor set with the smallest sum of distances
|e(s, x, y)− d(s0)|+ |e(d(s0), a, b)− d(s)| where d(·) returns a sample’s depth.

While using a single mesh can deliver a good approximation for slightly
varying camera positions, meshes from multiple directions substantially improve
the result for larger surface variations (Fig. 2). To determine the number of
meshes (views) to use, independent from the actual data, we employ a quality
measure based on the largest possible angle between the normal of a surface
patch and the mesh direction, resulting in the following: 1 view: 90◦, 2: 90◦,
3: 58◦, 4: 55◦, 6: 49◦, 6: 41◦, 7: 39◦, and 8: 37◦. While the computation cost
increases linearly with further directions, the quality of surface coverage does not.
Accordingly, although our approach works with an arbitrary number of directions,
we restrict ourselves to three as a reasonable trade-off in the following.

4 Steffen Frey, Filip Sadlo, and Thomas Ertl

(a) (b) (c) (d) (e)

Fig. 3. Mesh refinement for triangles and quads demonstrated with the higher-
order Shock Channel data [3] (t = 3.0, isovalue 4.6) showing the density of the
flow around a box obstacle (c), (e). Triangles: (a) The subdivision of a cell (dark
gray) forces further subdivisions (light gray) according to the 1-level difference
rule. (b) Triangles are generated using six triangle templates (up to rotation and
inversion). Quads: (d) Subdivision of a cell (dark gray) marks two respective edge
nodes (dark circles) and thus cells (light gray). New edge nodes are introduced and
previously marked edge nodes are removed. Another cell is chosen for subdivision
(dark gray), respective edge nodes are marked and transition cells selected (light
gray). Finally, quads are created using two templates.

Meshes from multiple directions cover some surface areas multiple times.
Trimming them according to their quality of coverage—defined by means of
the view direction and the surface normal (Sec. 3)—both avoids issues when
the meshes are overlayed for rendering and creates distinguished boundaries for
merging (Sec. 5). For every quadrilateral primitive q ∈ Qd from view direction
d ∈ D, we compute the normal vector n of each of its four vertices v ∈ q as the
cross product with its two neighboring vertices: nv = (v − vprev)× (v − vnext).
Whether a vertex v is valid or not is determined by testing for |nv · dq|/max(|nv ·
d|,∀d ∈ D) > r, with dq being the view direction from which q was generated. The
user-adjustable trimming parameter r specifies the extent of surface reduction
with respect to its normal and view direction as well as all other view directions.
The larger r, the more vertices are classified as invalid and the more primitives are
eventually discarded (Fig. 2). The choice of r is application-dependent as discussed
below. Finally, only quads remain that feature no invalid vertex. Overlaying
meshes from different directions for rendering simply requires enabled depth
testing. Optimally, r should thus be chosen such that there are neither low quality
primitives occluding fine details, nor holes in the geometry.

4 Mesh Refinement

Templates are employed for refining the obtained meshes from Sec. 3 to better
represent areas of high curvature without generating hanging vertices (i). This
requires new samples for the LDI (ii). Refinement not only happens within meshes,
but also at boundaries for growing the mesh toward silhouettes (iii).

(i) Refinement Templates. Templates differ for triangle and quad output.
For triangles, a classical quadtree approach is used (Fig. 3) with the maximum
subdivision level difference between neighboring cells being restricted to one

Lecture Notes in Computer Science 5

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 4. Refinement at silhouettes. (a) Initial quad and true silhouette (gray
curve). Cells containing true (gray) and invalid (white) samples are refined. (b)
After two levels of refinement (c), the edge growing rule marks the right upper
quad because it contains a valid sample on its left edge. (d) To resolve the hanging
node at the right edge of the original quad, a new quad to its right is generated (e)
and subdivided (f)–(g) to the respective level. Exemplary refinement of (h) toward
edges (and corners) with triangles (i) and quads (j).

to achieve good quality triangles. After cells are marked for subdivision, an
additional iterative 1-level difference pass is employed that marks cells that have
to be subdivided additionally to assure the constraint before generating triangles.

For quad mesh output the 1-level difference pass is substituted with the 2-
refinement quad templates (Fig. 3(d)) [32] [33]. Two templates featuring “reference
nodes” (dark circles in Fig. 3(d)) have to match so-called edge nodes inside the
mesh. During subdivision, an edge node is created each time an edge is subdivided.
For example, classical quadtree subdivision produces 5 new nodes, one in the
center and one on each of the edges of the original cell. Ebeida et al. [33] propose
to subdivide every cell of the initial mesh for producing an initial set of edge
nodes. Instead, we identify edge nodes for the initial (unrefined) mesh from the
pixel coordinates (x, y) of a vertex by testing if x + y mod 2 = 0, thus producing
a “chessboard pattern” of initial edge nodes. First, edge nodes are identified
that belong to cells marked for subdivision (active edge nodes, gray circles).
Subsequently, all cells sharing such an active edge node are identified (transition
cells marked by light gray quads) and templates are applied to all identified cells.
Finally, previously active edge nodes are removed from the edge node set. A
quad is marked for refinement, if any of its vertices is invalid, or the smallest
dot product of a vertex normal with all neighboring vertex normals is below a
certain value (0.99 proved successful in our experiments).

(ii) LDI Extension Sampling. Requests for additional LDI samples using
the raycaster contain the direction and the new image position. All requests of
one refinement pass are collected and processed at one go. Quad generation then
works analogous to the initial mesh creation process (Sec. 3). If no new quad can
be generated with the samples, an “invalid” vertex is used instead whose depth
and normal are generated by interpolation from surrounding vertices. Invalid
vertices are used for refining toward boundaries and silhouettes (iii). Primitives
containing invalid vertices at the end of the refinement phase are removed.

(iii) Growing toward Boundaries and Silhouettes. The initial quads
might not suffice as features can be missed that are smaller than the initial
sampling distance. Thus boundaries and sharp tips of the isosurface might not be
represented appropriately (Fig. 4). To refine toward these (Fig. 4(a)), a new top

6 Steffen Frey, Filip Sadlo, and Thomas Ertl

(i) Sew triangles (ii) Greedy triangle merging

(iii) Fill triangle holes (iv) Quality Pass w/ Laplacian Smoothing

(a) Triangle to quad conversion for sewing regions
(light (i)–(iii)) and refinement of curved regions

(b) Quad mesh from CFD
flow around sphere

Fig. 5. Merged and refined quadrilateral isosurface meshes from three LDIs.

level quad is added if one valid vertex exists on an open edge of an existing top
level quad (quad before subdivision) (Figs. 4(b)–(d)). Such a vertex represents a
hanging node that is resolved by quad subdivision (Figs. 4(f)–(g)). Adding a top
level quad instead of a “small” (already refined) quad allows efficient recognition
of quads growing from different boundaries to a sharing edge, thus preventing
mesh overlaps. Furthermore, the refinement templates with their associated
1-level-difference criterion or marked vertices can be handled more consistently.

5 Combining Meshes

First, we trim overlapping parts (Sec. 3) using r = 1 (i.e., keeping only vertices
whose normal best matches its original view direction) and then remove the
“boundary” layer of cells featuring an edge with no neighbor (e.g., Fig. 2(n)). The
resulting parts are combined by inserting so-called bridges (i) that connect close
meshes. The remaining holes in the connected meshes are filled with triangles (ii)
which can be quality-improved (iii), and finally converted to quads (iv).

(i) Bridge Generation. Bridges are quads with one edge ea being connected
to mesh a, one edge eb connected to another mesh b, and two connecting open
edges eab and eba. Bounding boxes are used to determine the distances of all
mesh patch pairs a and b in order to identify the bridge to be inserted with the
smallest edge lengths |eab| and |eba|. The bridge is kept and thus the meshes are
merged if neither |eab| nor |eba| exceed l = |ea| + |eb|. In our experiments, we
stopped the search early when |eab|+ |eba| < l/2 for faster results.

(ii) Hole Filling. Bridges reduce mesh combination to a hole filling problem.
We employ an ear-cutting algorithm due to its simplicity and low computational
complexity: iteratively the shortest possible edge is introduced that forms a
triangle with two existing open edges until there are no open edges left. However,
due to the intricacy of 3D meshing, these approaches are “heuristics” that typically
cannot be proven to provide the correct result [25]. Nevertheless, refinement and
trimming typically provide good-natured hole problems that are easy to fill.

(iii) Triangle Mesh Enhancement. First, all quads that are directly adja-
cent to hole-filling triangles are split into triangles (resulting in the sewing region
Fig. 5(a)(i) (light)). Next, edge flips based on edge length are performed. 3-to-1
triangle merges then resolve configurations of three adjacent triangles that are
almost coplanar, detected by a vanishing determinant of the spanned tetrahedron.

Lecture Notes in Computer Science 7

Table 1. Timing results in seconds for different data sets and steps of our
approach (if executed) on a single core of an Intel Core i7 with 3.4 GHz.

Fig. Mesh. Ref. Bridge Sew Qual. Tot.

Klein Bottle [34] (1282)
2 0.04 – – – – 0.04

Barth [34] (642, 1282, 2562, 5122)
2(g) 0.02 – – – – 0.02
2(h) 0.11 – – – – 0.11
2(o) 0.43 – – – – 0.43
2(p) 1.84 – – – – 1.84

Marschner-Lobb [35] (642, 5122)
6(g) 0.08 – 0.11 0.04 0.23 0.46
6(h) 0.08 0.73 0.62 0.1 0.79 2.32
6(i) 7.19 – 0.82 3.38 22.07 33.46

Fig. Mesh. Ref. Bridge Sew Qual. Tot.

Coulomb [34] 642

5(a) < 0.01 < 0.01 0.01 0.01 1.84 1.86

Sphere [3] 642

5(b) < 0.01 – < 0.01 0.01 0.40 0.40

Shock Channel [3] 642

3 < 0.01 0.01 – – – 0.01

Slices 162, 242, 322

x2 + y2 + z2 + sin(5x + 15y + 6z) − 1
6(j) < 0.01 – < 0.01 < 0.01 < 0.01 < 0.01
6(k) < 0.01 – 0.01 0.01 < 0.01 0.02
6(l) 0.02 – 0.02 0.01 0.04 0.09

(iv) Quad Mesh Generation. The triangles introduced during hole filling
and mesh enhancement (Fig. 5(a)(i)) can be converted to quads. The Catmull-
Clark algorithm would generate a high primitive count by introducing three
quads per triangle. Instead, we iteratively combine the pair of triangles that
leads to the best quad according to a simple quality metric (ratio of minimum to
maximum edge length) (Fig. 5(a)(ii)). Typically a small number of unmerged
triangles remains. Then, we find the triangle pair with the shortest connecting
path using Dijkstra’s algorithm. This path is edge-connected and contains the
triangle pair and the quads in between. Subsequently, we go from one triangle to
the other, splitting traversed edges by introducing edge vertices (Fig. 5(a)(iii)).
Passing a quad straight splits the quad in two, while passing adjacent edges splits
the quad in three (using the quad refinement template from Fig. 3(d)). We repeat
from identifying the shortest connecting path until all triangles are split into
quads and finally merge quads sharing two edges, improve the vertex valence via
quad edge flips toward four and apply Laplacian smoothing (Fig. 5(a)(iv)).

6 Results

For evaluation, we use the higher-order unstructured grid raycaster by Üffinger
et al. [3] using CUDA, and the implicit surface raycaster by Knoll et al. [34]
implemented in Cg. All data sets as well as timings for the presented results
throughout the paper can be found in Tab. 1. Timings do not include raycasting
times to generate the underlying LDI. Results were obtained using three viewing
directions along the x, y, and z-axis unless otherwise noted. Fig. 2(e),(f), and (m)
show that the larger r, the larger the mutually covered regions, reducing the risk of
holes, but also potentially leading to invalid coverings. In our experience, r = 0.5
provides a good trade-off overall. The timings (Tab. 1) also suggest that r could
be interactively adjusted to best fit the data set and the requirements of the user.
Fig. 2(n) shows r = 1 with the additional boundary trimming prior to sewing.
Preview meshes generated from different LDI resolutions (Fig. 2(g),(h),(o), and
(p)) provide more details for higher resolutions with a better coverage of thin
features and strong curvature with an approximately linear relation between

8 Steffen Frey, Filip Sadlo, and Thomas Ertl

(a) MC→ 19k (b) 50k (c) 1000k (d) 1.6k (e) 3.8k(f) 15.1k

(g) Our→ 642 (h) 642, ref. (i) 5122 (j) 162 (k) 242 (l) 482

Fig. 6. Comparison of our approach (bottom row with LDI resolution, “ref.”
denotes refinement) to MC (top row with triangle count) using the Marschner-
Lobb signal and the Slices data set. Vertical image pairs have approximately the
same triangle count. For Marschner-Lobb, additionally forward and backward
geometrical distances are depicted (top and bottom right) using a rainbow color
map from 0 to 0.005 and 0.03, respectively (domain extent is 0.64 per direction).

primitive numbers and generation time. Even the generation of high-resolution
meshes at interactive rates would be possible, considering the large improvement
potential through parallelization. Only one LDI can already suffice depending
on the nature of the isosurface (Fig. 3). Fig. 3 also demonstrates refinement to
the surface structure for triangles and quads. Although the original mesh of a
test function (Fig. 4) is very coarse (Fig. 4(h)), mesh growing still allows to nicely
adapt to edges and corners, both for triangles and quads (Fig. 4(i) and (j)).

In Fig. 6, we demonstrate the accuracy of our approach using geometric
distances in comparison to meshes from MC [36] with an approximately equal
triangle count. We compare all vertices of the candidate mesh to a reference (MC
with 5M triangles) (forward) and all vertices of the reference to the candidate
(backward). In contrast to MC with a similar triangle count, our meshes deliver
close to perfect results with forward comparison, and are also consistently better
for backward comparison (particularly at signal peaks in comparison to the jagged
coverage of MC). Much better results than MC (Fig. 6(a)) are also achieved for
very low resolutions, despite some artifacts due to insufficient sampling (Fig. 6(g),
incorrect bridges, and hole filling as both steps rely on sampling distance for
finding correct matches). Our approach preserves the basic structure of data well,
even if topologically incorrect bridges between the slices are introduced (Fig. 6(d)–
(f), (j)–(l)). Refinement leads to smaller gaps between mesh patches that belong
together topologically and thus reduces artifacts (Fig. 6(h)). However, although
significantly decreasing, small holes in the peaks of the signal in boundary regions
even persist with fine sampling (Fig. 6(i)) as connections across the peak are
shorter than along the peak. This could be fixed by advanced bridging and hole
filling heuristics considering normal variation in addition to distance. Overall,
from low to high resolution, our approach was able to generate a more detailed
approximation for approximately equal triangle counts.

Lecture Notes in Computer Science 9

7 Conclusion

We presented and evaluated a novel approach for view-dependent mesh extraction
from LDIs independent of the underlying data structure. We demonstrated its
usefulness in the context of existing raycasting-based techniques, providing fast
generation of adaptively refined triangle and quad meshes, both for the purpose of
preview rendering and further analysis. As a consequence, however, no topological
guarantees can be made in contrast to commonly used isosurface extraction
techniques (e.g., [5] [6]). For future work, we plan to work on a data-dependent
LDI view selection and to conduct a more in-depth evaluation of our technique
in comparison to other meshing techniques beyond classic MC, e.g., by using
topology verification techniques [37].

References

1. Knoll, A.M., Wald, I., Hansen, C.D.: Coherent multiresolution isosurface ray tracing.
Vis. Comput. 25 (2009) 209–225

2. Gamito, M.N., Maddock, S.C.: Ray casting implicit fractal surfaces with reduced
affine arithmetic. Vis. Comput. 23 (2007) 155–165

3. Üffinger, M., Frey, S., Ertl, T.: Interactive high-quality visualization of higher-order
finite elements. CGF 29 (2010) 337–346

4. Shade, J., Gortler, S., He, L.w., Szeliski, R.: Layered depth images. SIGGRAPH
(1998) 231–242

5. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction
algorithm. Computer Graphics 21 (1987) 163–169

6. Schaefer, S., Warren, J.: Dual marching cubes: primal contouring of dual grids.
(2004) 70–76

7. Fryazinov, O., Pasko, A., Comninos, P.: Fast reliable interrogation of procedurally
defined implicit surfaces using extended revised affine arithmetic. Comput. Graph.
34 (2010) 708–718

8. Remacle, J.F., Henrotte, F., Baudouin, T., Geuzaine, C., Bchet, E., Mouton, T.,
Marchandise, E.: A frontal delaunay quad mesh generator using the l norm. In:
20th Meshing Roundtable. (2012) 455–472

9. Wiley, D.F., Childs, H.R., Gregorski, B.F., Hamann, B., Joy, K.I.: Contouring
curved quadratic elements. In: VisSym. (2003) –1–1

10. Pagot, C.A., Vollrath, J., Sadlo, F., Weiskopf, D., Ertl, T., Comba, J.: Interactive
isocontouring of high-order surfaces. In: Scientific Visualization: Interactions,
Features, Metaphors. (2011)

11. Nielson, G.M.: Dual marching cubes. VIS (2004) 489–496
12. Dietrich, C., Scheidegger, C., Schreiner, J., Comba, J., Nedel, L., Silva, C.: Edge

transformations for improving mesh quality of marching cubes. TVCG 15 (2009)
150 –159

13. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.:
Quad meshing. In: Eurographics, The Eurographics Association (2012) 159–182

14. Zhou, Y., Chen, B., Kaufman, A.: Multiresolution tetrahedral framework for
visualizing regular volume data. (1997) 135 –142

15. Anderson, J., Bennett, J., Joy, K.: Marching diamonds for unstructured meshes.
In: VIS 05. (2005) 423 – 429

10 Steffen Frey, Filip Sadlo, and Thomas Ertl

16. Grosso, R., Ertl, T.: Progressive iso-surface extraction from hierarchical 3d meshes.
CGF 17 (1998) 125–135

17. Westermann, R., Kobbelt, L., Ertl, T.: Real-time exploration of regular volume
data by adaptive reconstruction of iso-surfaces. The Visual Computer 15 (1999)
100–111

18. Dey, T., Levine, J.: Delaunay meshing of isosurfaces. In: Shape Modeling and
Applications, 2007. (2007) 241 –250

19. Schreiner, J., Scheidegger, C., Silva, C.: High-quality extraction of isosurfaces from
regular and irregular grids. TVCG 12 (2006) 1205–1212

20. Scheidegger, C.E., Fleishman, S., Silva, C.T.: Triangulating point set surfaces with
bounded error. In: EG symposium on Geometry processing. (2005)

21. Kobbelt, L.P., Botsch, M.: An interactive approach to point cloud triangulation.
In: Proc. Eurographics. (2000)

22. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. SIGGRAPH (1996) 303–312

23. Turk, G., Levoy, M.: Zippered polygon meshes from range images. SIGGRAPH
(1994) 311–318

24. Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi, P., Scopigno, R.: The
marching intersections algorithm for merging range images. The Visual Computer
20 (2004) 149–164

25. Held, M.: Fist: Fast industrial-strength triangulation of polygons. Technical report,
Algorithmica (2000)

26. Sadlo, F., Üffinger, M., Pagot, C., Osmari, D., Comba, J., Ertl, T., Munz, C.D.,
Weiskopf, D.: Visualization of cell-based higher-order fields. Computing in Science
and Engineering 13 (2011) 84–91

27. Nelson, B., Kirby, R.M., Haimes, R.: GPU-Based Interactive Cut-Surface Extraction
From High-Order Finite Element Fields. TVCG 17 (2011) 1803 –1811

28. Rosenthal, P., Linsen, L.: Direct isosurface extraction from scattered volume data.
In: EuroVis. (2006) 99–106

29. Ropinski, T., Prassni, J., Steinicke, F., Hinrichs, K.: Stroke-based transfer function
design. In: SPBG, Eurographics Association (2008) 41–48

30. LaMar, E., Pascucci, V.: A multi-layered image cache for scientific visualization.
In: PVG. (2003) 9–

31. Tikhonova, A., Correa, C., Ma, K.L.: Explorable images for visualizing volume
data. In: PacificVis. (2010) 177–184

32. Schneiders, R.: Refining quadrilateral and hexahedral element meshes. In: 5th
International Conference on Grid Generation in Computational Field Simulations,
CRC Press (1996) 679–688

33. Ebeida, M.S., Patney, A., Owens, J.D., Mestreau, E.: Isotropic conforming re-
finement of quadrilateral and hexahedral meshes using two-refinement templates.
International Journal for Numerical Methods in Engineering (2011)

34. Knoll, A., Hijazi, Y., Kensler, A., Schott, M., Hansen, C.D., Hagen, H.: Fast ray
tracing of arbitrary implicit surfaces with interval and affine arithmetic. CGF 28
(2009) 26–40

35. Marschner, S.R., Lobb, R.J.: An evaluation of reconstruction filters for volume
rendering. In: Vis. VIS (1994) 100–107

36. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified
surfaces. CGF 17 (1998) 167–174

37. Etiene, T., Nonato, L.G., Scheidegger, C., Tierny, J., Peters, T.J., Pascucci, V.,
Kirby, R.M., Silva, C.T.: Topology verification for isosurface extraction. TVCG 18
(2012) 952–965

