
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 1

On Evaluating Runtime Performance of
Interactive Visualizations

Valentin Bruder, Christoph Müller, Steffen Frey, and Thomas Ertl

Abstract—As our field matures, evaluation of visualization techniques has extended from reporting runtime performance to studying user
behavior. Consequently, many methodologies and best practices for user studies have evolved. While maintaining interactivity continues
to be crucial for the exploration of large data sets, no similar methodological foundation for evaluating runtime performance has been
developed. Our analysis of 50 recent visualization papers on new or improved techniques for rendering volumes or particles indicates that
only a very limited set of parameters like different data sets, camera paths, viewport sizes, and GPUs are investigated, which make
comparison with other techniques or generalization to other parameter ranges at least questionable. To derive a deeper understanding of
qualitative runtime behavior and quantitative parameter dependencies, we developed a framework for the most exhaustive performance
evaluation of volume and particle visualization techniques that we are aware of, including millions of measurements on ten different GPUs.
This paper reports on our insights from statistical analysis of this data, discussing independent and linear parameter behavior and
non-obvious effects. We give recommendations for best practices when evaluating runtime performance of scientific visualization
applications, which can serve as a starting point for more elaborate models of performance quantification.

Index Terms—Performance evaluation, scientific visualization, volume rendering, particle rendering

F

1 INTRODUCTION AND MOTIVATION

T HE analysis of algorithmic and computational performance is
probably as old as research in computer science. In the field

of scientific visualization, run-time performance has always been
of great importance due to the high computational demand of many
algorithms used in this domain on the one hand and the strive for
interactive frame rates on the other. The traditional approach to
performance evaluation in scientific visualization papers concerned
with interactive techniques often is measuring performance for
several data sets the authors deem representative. In many cases,
authors compare the proposed technique with some comparable
ones on one or two different systems (cf. Tables 2 & 4). The fact
that there are numerous factors that can influence performance even
for simple visualization algorithms raises the question to which
extent such common evaluations are actually representative. Does
using only a small subset of possible configurations such as a few
data sets and one computing device lead to missing influential
performance characteristics? Which are the most important factors
that need to be investigated closely to paint a comprehensive picture
of rendering performance? Are there typical correlations of factors
that might help finding a concise, yet complete description?

To address these questions, we developed a benchmarking
framework capable of running and measuring algorithms with
different parameter configurations in an automated fashion (Sec. 4).
In this work, we focus on GPU-accelerated interactive scientific
visualization approaches running on a single machine. We discuss
two case studies, investigating parameter dimensions such as

• All authors are with the Visualization Research Insitute, University of
Stuttgart, Germany. E-mail: firstname.lastname@visus.uni-stuttgart.de

Manuscript received Sept. 14, 2018; revised Dec. 14, 2018; accepted XX xxx.
20XX. Date of publication XX xxx. 20XX; date of current version 14 Dec. 2018.
(Corresponding author: Valentin Bruder.)
Recommended for acceptance by XXX.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. XXX

data sets, GPUs, camera configurations, rendering techniques, and
sampling rates.

The first case study concerns itself with volume rendering, a
fundamental tool for the analysis of simulations and measurements
in numerous scientific domains such as physics, medicine, engi-
neering, etc. Volume rendering has been an active area of research
in scientific visualization for decades, and many ways to improve
its run-time performance have been proposed. From a technical
point of view, it has very distinct properties, most importantly its
reliance on fast graphics memory access and interpolation. The
volume rendering case study is described in Sec. 5.

In the second case study, we consider GPU-based splatting
of spherical glyphs, which has found wide adoption in the
visualization of particle-based data sets like molecular dynamics
simulations. Improving rendering performance has been a major
focus of research in this area, because the ever-increasing size of
simulations demands faster rendering to enable interactive data
exploration. In context of our case study, the interesting aspects
of this application are the (usually) incoherent layout of the data
in memory, its reliance on the rasterization pipeline and it being
rather compute-bound than memory-bound. The particle rendering
case study is described in Sec. 6

Thus, our case studies cover algorithms, which are memory-
bound and interpolation-bound on the one hand, as well as
rasterization-bound on the other. For each case study, we provide
a brief overview of performance evaluation in previous papers
(Sec. 5.1 and 6.1) and an outline of our implementation used in
the benchmark (Sec. 5.2 and 6.2). Afterwards, we present a top-
down analysis of the measurements we obtained on a variety of
discrete GPUs from NVIDIA and AMD (Sec. 5.3 and 6.3). Thereby,
a focus lies on identifying linear factors that can be considered
independently from other variable parameters. Furthermore, finding
factors with similar characteristics across case studies is another
priority of our data analysis. On this basis, we provide a list of
best practices (Sec. 7.1) for improving performance evaluations in



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX

future works. The main contributions of this work are:
• Development and provision of a publicly available bench-

marking framework for scientific visualization applications,
including plugins for volume rendering and particle rendering.

• Based on a review of state-of-the-art and extensive measure-
ments with our framework, we suggest best practices that
can be used as a guideline for future empirical performance
evaluation of visualization techniques.

2 RELATED WORK

Laramee [41] discusses some fundamentals of performance analysis
in his educational paper on “How to write a visualization research
paper”. He advises to present a table with performance results
including optimizations for speed and quality. Furthermore, he
suggests to show the limits of the algorithm. This form of
performance evaluation can be found in many visualization papers.

There are various papers encouraging the use of an empirical
approach to performance evaluation, as this is the foundation for
building prediction models. Tichy et al. [65] performed a quantita-
tive study on experimental evaluation in computer science with the
result that relatively few published papers contain experimentally
validated results. Feitelson [12] argues that research projects tend to
create their “own unique world”. He proposes a higher acceptance
of experimentation approaches from other scientific fields.

Interactivity in visualization is crucial to enable users to explore
and gain new insights from data. To achieve the necessary low
response times, GPUs with their high compute and memory
performance are commonly employed for interactive scientific
visualization [22], [38], [59]. For instance, enhancing the perfor-
mance of GPU-based volumetric raycasting in different forms
has emerged into a significant field of research on its own [4].
However, even in this well-studied context, the performance
achieved in practice significantly varies with factors like data,
parameters, and hardware, in a way that is almost impossible to
assess beforehand. To account for this, Bethel et al. [3] tested a
variety of settings, algorithmic optimizations, and different memory
layouts for the Intel Nehalem, AMD Magny Cours, and NVIDIA
Fermi architecture. Among other aspects, they found that optimal
configurations vary across platforms, often in non-obvious ways.
Such an analysis of performance characteristics is not only of
interest for parameter tuning or hardware acquisition, but is also
the basis for developing improved algorithms (cf. Bentes et al. [2]).
Larsen et al. [43] perform an in-depth performance evaluation
on different CPUs and a GPU of their unstructured grid volume
renderer using data-parallel primitives, also comparing their work
against alternative approaches. GPU-based rendering of particles
has been an active area of research for many years as well [23], [32],
[61]. In the following, we mainly focus on techniques that are used
for rendering molecular dynamics visualization [18] (cf. Table 4).

A thorough analysis of performance is fundamental for the
prediction and modeling of application performance in computer
architecture and high-performance computing. Both, generic per-
formance models [9], [27], [35] as well as approaches specific to
a certain architecture (e.g., NVIDIA GPUs of the 200-series [74])
have been proposed. Such approaches are mostly based on variants
of so-called micro-benchmarks consisting of relatively small and
specific pieces of code to test for certain characteristics. The models
often target more or less generic compute applications, but there has
also been some work focusing on scientific visualization, especially
in the domain of high-performance computing. Rizzi et al. [54]

presented an analytical model for predicting the scaling behavior
of parallel volume rendering on GPU clusters, while Tkachev
et al. [66] used neural networks to predict volume visualization
performance. Larsen et al. [42] took a more general approach and
modeled the performance of in-situ rendering in the context of
high-performance computing. They investigated volume rendering,
raytracing, and rasterization – three fundamental techniques for
scientific visualization. Other proposed performance modeling and
prediction methods focus on object-order rendering algorithms [63],
[69], or on creating a performance model for a visualization
pipeline [5].

3 MOTIVATION OF AN EMPIRICAL APPROACH

While there are many different approaches on performance esti-
mation (cf. Sec. 2), we focus on measurement-based estimation in
this paper. In interactive scientific visualization, using empirical
measurements to report performance is by far the most common
approach. Interactive applications can typically generate many
measurements comparably fast, requiring only little alterations to
the code. This way, empirical measurements are able to capture the
various factors influencing the performance of such applications.

In direct comparison with analytic performance modeling,
which is another common approach, there are several advantages of
an empirical approach in the case of interactive visualizations. First,
concrete performance numbers achieved in practice are reported.
However, using measurements instead of theoretic estimations also
introduces uncertainty on the portability of performance numbers
to other systems, data sets, and configurations. We address this
uncertainty in part with this work by performing and analyzing
extensive measurements. In general, there are cases in which
the assessment of portable performance numbers becomes very
hard or even impossible. With increasing complexity of a system,
it becomes difficult to take all possible influencing factors and
their combined performance characteristics into account. In those
cases, an empirical approach is often better suited. Finally, the
performance impact of some factors is hard or even impossible
to assess without executing the algorithm. Early ray termination
(ERT) as acceleration for volume raycasting is such an example.
The performance influence of this optimization technique highly
depends on the data and the employed transfer function. Using
ERT, even a small change to the transfer function can dramatically
impact the number of samples along rays, e.g., if a surface changes
from transparent to fully opaque. It would be very hard to cover
such a change by a model, e.g., when estimating performance based
on the numbers of samples and cost per sample.

4 OVERVIEW

In this paper, we discuss how the current practice of empirical
performance evaluation in scientific visualization research com-
pares to our approach of using extensive measurements. This
includes investigating the question whether the evaluation criteria
typically used in publications are a generally valid approach to
report performance. Furthermore, we evaluate how we can possibly
improve on the current practice to be more expressive. Note
that in this work, we look at the currently common approach
of performance evaluation for novel or improved interactive
techniques in scientific visualization, also including techniques
that improve the visuals. Our work is, however, not focused on
comparing against performance evaluation techniques in particular.



BRUDER et al.: ON EVALUATING RUNTIME PERFORMANCE OF INTERACTIVE VISUALIZATIONS 3

TABLE 1: GPUs Used for Performance Measurements.

Vendor Model Architecture Shader units

AMD Radeon R9 290* GCN 2 2560
AMD Radeon R9 Nano* GCN 3 4096
AMD Radeon RX 480 GCN 4 2304
AMD Radeon Vega FE GCN 5 4096
NVIDIA GeForce GTX 980* Maxwell 2048
NVIDIA Quadro M6000 Maxwell 3072
NVIDIA TITAN X (Pascal) Pascal 3584
NVIDIA GeForce GTX 1080 Ti Pascal 3584
NVIDIA Quadro GP100* Pascal 3584
NVIDIA TITAN Xp Pascal 3840

* Only used in volume rendering benchmark.

Our basis is measuring an extensive amount of different param-
eter configurations and data sets on various systems for two distinct
scientific visualization applications: volume raycasting and particle
rendering. Both applications are custom implementations that are
embedded in a benchmarking framework handling program flow,
automatic parameter changes and logging of the runtime measure-
ments. The framework and both applications are open source and
can be accessed via https://github.com/UniStuttgart-VISUS/trrojan.

We focus on the performance of the two studied techniques in
terms of frame times, which are crucial especially for interactive
applications. However, there are other important performance
measures as well, such as power and memory consumption. Further-
more, we restrict ourselves to scientific visualization applications
in a single node environment that use GPUs without out-of-core-
techniques. We presume though, that many of the concepts may
be transferred to a broader field of visualization applications and
usage scenarios.

A simple investigation of sequences of frame times (for
instance, using percentiles) is not expressive for the immense
number of measurements and resulting frame times we gathered.
Therefore, our analysis approach is to use descriptive statistics, i.e.,
we mainly look at distributions, linear correlations of influencing
factors, subsets of our data, and general patterns. Here, we do not
investigate single outliers and specific measurement points.

4.1 Experiment Design
For conducting our experiment, we developed an extensible
benchmarking framework which allows us to automatically evaluate
all combinations of influencing factors (rendering parameters,
resolution, data set, . . . ) based on a simple declarative description.
This description supports an arbitrary amount of Boolean or
numerical values with up to four dimensions each as well as
strings to to encode categorical factors such as file names of
data sets. The factors that can be measured also include a series
of pre-defined camera paths ranging from the commonly used
orbits around the data set, over fly-throughs in all directions on
straight or curved paths, to randomly selected views (cf. Fig. 1).
Our framework provides a plugin mechanism, by means of which
different kinds of benchmarking environments (here: compute APIs)
and devices (here: GPUs) can be added. For our experiment, we
implemented two environments, one for OpenCL 1.2 and one
for Direct3D 11. The rationale behind those choices is that both
APIs work for GPUs from different manufacturers. All GPUs that
we tested in our experiment are listed in Table 1. For measuring
their rendering performance, we used similarly equipped machines.
These comprised an Intel Xeon E5-2630 processor running at
2.2 GHz and 64 GB of RAM per CPU for all GPUs except for

Fig. 1: Different camera paths used in measurements: orbit around
data set, straight path along axes, diagonal, and sine curve.

the NVIDIA TITAN Xp (Intel Core i9-7900X at 3.3 GHz) and the
GeForce GTX 1080 Ti (Core i7-7700K at 4.2 GHz). All systems
ran on Windows 10 1709 (64-bit) with the latest stable drivers from
AMD and NVIDIA, respectively.

4.2 Analysis Process

For analyzing our measurement data, we follow a top-down
approach to gain insights into our large body of performance
measurement data with little prior knowledge. Accordingly, we
begin by looking at the overall distribution of the timings we
obtained, investigating whether performance data of volume
rendering and particle raycasting follow any known distribution.
In a second step, we continue by investigating whether we can
find a linear interrelationship between factors that we varied
during the experiment. There are several reasons for focusing
on linear dependencies: first, such results may be a convenient
and intelligible way to describe the overall influence of a factor.
Second, we would expect factors, such as the used hardware device,
to have a linear influence on the results as long as all devices
have the same capabilities. While we do not feature out-of-core
rendering in our test applications yet, we would expect a non-
linear performance impact. For instance, if one of the devices has
not enough memory capacity and needs to switch to out-of-core
rendering (data streaming) at a certain data set size while the others
do not have to, a noticeable difference in the performance data
would be expected. The device’s rendering performance would
decrease more or less linearly with increasing data set size, while
at the point when switching to use out-of-core streaming, there
would be a performance gap. We plan to verify this assumption
with implementing and measuring out-of-core techniques in future
work. In general, we first compare correlation coefficients on a per
feature level, i.e. we look at the means and ranges of the correlation
factors for the different specificities of each feature.

We proceed with looking into each of the influencing factors
that we varied in more detail, by further investigating correlations.
Here, we focus on single values of the respective factor, i.e.
examining correlation matrices. By using linear regression, we
additionally calculate concrete speed-ups for different factor values
for the linear behaving factors that we determined before. We
conclude the analysis process with a closer look at interesting
findings and anomalies in the data.

5 CASE STUDY 1: VOLUME VISUALIZATION BY
MEANS OF GPU RAYCASTING

As our first case study, we examine volume visualization, one
of the classic and most fundamental techniques in scientific
visualization. Volume visualization is a computationally demanding
application, especially for high resolution data sets from state-of-
the-art scanners and simulations. Therefore, evaluating performance



4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX

TABLE 2: Performance Evaluation in Recent Selected Volume
Rendering Papers.

Authors Year GPUsd Viewports Data Views
sets

Hadwiger et al. [20] 2018 N 1 8 –a

Magnus et al. [51] 2018 N 3 8 –a

Wang et al. [68] 2017 N 3 3c rot. x,y,z
Jonsson et al. [30] 2017 N –a 4c –a

Wu et al. [70] 2017 2× N 1 6 –a

Sans et al. [55] 2016 N 1 4 –a

Zhang et al. [73] 2016 I –a 7 –a

Ament et al. [1] 2016 N 1 6 –a

Bruder et al. [7] 2016 N 1 6 > 500b

Zhang et al. [72] 2016 N –a 6 –a

Ding et al. [10] 2015 N 1 4c –a

Sugimoto et al. [62] 2014 N 1 2 rot. x,y,z
Hero et al. [26] 2014 N 1 5 –a

Frey et al. [13] 2014 N 1 4c > 1000b

Lee et al. [45] 2013 N 1 5 360
Liu et al. [48] 2013 N 2 9 –a

Yang et al. [71] 2012 N –a 6 –a

Jonsson et al. [29] 2012 N 1 5 1 or 2
Kronander et al. [36] 2012 N 1 8 –a

Schlegel et al. [56] 2011 N 1 7 –a

Hernell et al. [25] 2010 N –a 1 –a

Zhou et al. [75] 2009 N 1 4 –a

Lundström et al. [50] 2007 N 1 3 –a

Ljung et al. [49] 2006 A 1 4 2
Stegmaier et al. [60] 2005 N 2 1 rot. y
Bruckner et al. [6] 2005 N 1 1 3×360
Krüger et al. [39] 2003 A 1 4 –a

a Property not mentioned in the paper.
b Interaction sequence with variable number of views.
c Time-series data sets.
d N = NVIDIA, A = AMD/ATI, I = Intel.

in volume visualization applications usually has been – and still
is – a central aspect of analysis when extending techniques or
developing new approaches in the domain. In particular, we
consider GPU raycasting techniques, which are nowadays the
de facto standard in volume rendering.

5.1 Common Practice

We first review publications with a strong focus on GPU volume
raycasting and performance-related aspects to assess the common
practice of performance evaluation in the field (Table 2). The
majority of publications deal with real-time volume rendering
in single node environments. After a review of their individual
approaches for performance evaluation, we identified the following
commonalities that are shared by a majority of the works.

Except Wu et al. [70], a single GPU was used in all papers (in
almost all cases from NVIDIA). On average, around five data sets
were evaluated. Transfer functions were unspecified in most cases,
but are often depicted in figures. Across different papers, the size
of the data sets ranged from less than one Megavoxel to several
Gigavoxels (with the exception of Hadwiger et al. [20], who used
a data set with more than one Teravoxel). In most cases, camera
positions and parameters were not specified explicitly. Five papers
used orbital rotations around one or three axes [6], [45], [60],
[62], [68], while two papers employed pre-defined user interaction
sequences [7], [13]. The size of the viewports were specified in
most cases, with some exceptions [25], [30], [71], [72], [73]. In
most cases, a single resolution was measured, with a pixel count
of less or around one Megapixel (1024×1024). In some papers,
several viewports were evaluated [48], [51], [60], [68]. Other

rendering parameters were given to some extent, e.g., raycasting
step sizes are specified or described in roughly half of the papers
listed. Algorithmic variations, such as acceleration techniques
and illumination methods, were stated often, but not always. In
terms of performance indicators, most authors provided at least a
single frame-per-second value per data set. Although it is seldom
stated explicitly, we assume these numbers to be average values
of multiple measurements. Some authors additionally provided
minimum and maximum frame rates [21], [60], speed-ups or even
frame time diagrams. Memory consumption is also reported in a
few works.

In our first case study, we test the parameters usually evaluated
in common practice: GPUs, viewports, data sets, and camera paths.
We do not consider parameters that are specific to certain techniques
such as illumination. We sampled each parameter dimension at
least as extensively as in the respective papers. In addition to the
parameters directly derived from common practice, we measured
different sampling sizes along the ray, two acceleration techniques,
and transfer functions. Testing various GPUs help in understanding
device portability. Sampling rate parameters are numerical and
have a well defined order, therefore providing means to test for
scalability. Different data representations are covered by measuring
data sets and transfer functions. With the camera setup being not
reported in many of the reviewed papers, we wanted to test how
different camera paths influence performance and what can be
considered to be most representative. Evaluating with and without
early ray termination (ERT) and empty space skipping (ESS) gives
us the possibility to emulate an accelerated rendering technique.

5.2 Our Test Implementation

We systematically analyze the performance of volume rendering,
using our performance evaluation framework (see Sec. 4.1) and our
custom implementation of GPU-based volume raycasting. For this,
our design choices are directly derived from the reviewed papers
to reflect the current standard approach in the field (cf. Sec. 5.1).
Accordingly, we employ a front-to-back volume raycaster with
perspective projection, which usually results in a higher thread
divergence compared to orthographic projection. The renderer
features local illumination based on gradients (calculated with
central differences), and optionally, we also use two acceleration
techniques: ERT and empty space skipping (ESS). For our imple-
mentation, we make use of the OpenCL 1.2 compute API, because
it enables us to compare the exact same implementation across
graphics cards from different vendors. Note that GLSL and CUDA
are frequently chosen for implementation as well, yet the impact
of these choices on performance is typically negligible. Volume
raycasting is a comparably simple algorithm and its parallelization
is trivial, which should theoretically minimize the advantage of
vendor-specific APIs with respect to kernel execution times. We
also do not use any specific (vendor optimized) libraries.

Table 3 lists the parameters that we varied in our volume ren-
dering benchmark. In the following, we denote them as influencing
factors. We further divide those factors into two classes: numerical
(viewport and the step size along the rays) and categorical (the
rest). We propose this distinction, because categorical factors do
not have a well defined order, while we can sort numerical ones.
The categorical factors also include the binary factors, such as
the use of early ray termination. Besides variations of sampling
resolutions in object space and image space, we used 21 different
data sets for our evaluation. We use only two different transfer



BRUDER et al.: ON EVALUATING RUNTIME PERFORMANCE OF INTERACTIVE VISUALIZATIONS 5

Fig. 2: Renderings of the tested volume data sets from CT scans, simulations, and artificial generation. From left to right: Bat, Bonsai,
Bunny, Chameleon, Engine, Foot, Foraminifera, Gradient box, Frequency box, Hazelnut (top row); Hoatzin, Kingfisher, Mandelbulb,
Porous media, Mouse, Supernova, Parakeet, Skull, VisFemale, Zeiss (bottom row). The uniform box is not shown.

TABLE 3: Varied Parameters in Volume Rendering Benchmark.

Factor Number Values

Device 10 see Table 1
Viewport 3 5122, 10242, 20482

Step size 4 0.25,0.5,1.0,2.0
Acceleration 2×2 ERT, ESS (on/off)
Camera path 7×36 orbitx/y,diagonal, pathx/y/z/sinz
Transfer function 2 see Fig. 2
Data set 21 see Fig. 2

functions, because in combination with the use of acceleration
techniques, distinct transfer functions can be seen as different data
shapes (see Sec. 5.3 for a more detailed discussion). The step sizes
in Table 3 are relative to the voxel length. That means for instance,
a step size of 0.5 results in 2 samplings inside a voxel if the ray is
parallel to one of the voxel’s edges.

We ran our application on various discrete GPUs from NVIDIA
and AMD, spanning multiple generations of different architectures.
All of the GPUs used for the benchmark have sufficient memory to
store the test data sets. To study the impact of simple performance
improvement techniques, we enabled respectively disabled early
ray termination and empty space skipping. We employ an image-
order empty space skipping approach that is designed to be used in
a single rendering pass, i.e. no rasterization is involved. For that,
we implemented a 3D digital differential analyzer (DDA) to sample
a low resolution representation of the volume data determining
empty bricks and skipping them on-the-fly. The time needed for
data pre-processing is not part of the measurement. The majority
of the data sets we measured have also been used for performance
evaluation in the reviewed papers (Table 2). Their resolutions range
from 2562×128 up to 10243 voxels. The spacing along the x- and
y-axes is the same for all data sets, while the slice size along the
z-axis differs for about half of the data sets. Notably, the tested
data sets also include three generated cubic data sets: one with a
uniform density value, another one with a density gradient from
one corner to the opposite, and one featuring a high frequency
pattern generated by using trigonometric functions. Exemplary
renderings of all data sets but the uniform box are shown in Fig. 2.
Although our implementation can handle and convert 8, 16, 32
and 64 bit data precision and sampling precision per voxel, we
limit ourselves to 8 bit sampling precision in the following for the
sake of better manageability of the data (every factor significantly
raises the number of measurements due to the added dimension).
In our pre-tests, they exhibited linear behavior for different data
precision across most devices. The performance on AMD GPUs
was affected a little less than on NVIDIA cards when increasing

Fig. 3: Overall distribution of execution time medians (left) and
scaled logarithmically (right) of the volume raycastings. Red lines
mark the global mean, a log-normal distribution fit shows the
deviation thereof.

the scalar precision, with the exception of the AMD N9 Nano that
was affected most of all cards.

To emulate different evaluation methods, we designed simple
camera paths that can be sampled in arbitrarily small intervals. To
keep the computational effort manageable, we used 36 samples
(camera positions) per path, adding up to a total of 252 different
camera positions. The employed paths are schematically depicted
in Fig. 1. We use a full orbit around the x-axis and y-axis (as
in [6], [45], [60], [62], [68]), three straight paths into the volume
data set along each axis, a diagonal path from one corner of the
bounding box towards the opposite one, and one path along a
scaled sine-curve in z-direction. All paths begin with a full view of
the bounding box and (except the orbits) stop at its center. For the
orbits, the view direction is always towards the center of the data
set. We measured the kernel execution time of each configuration
by using the queue profiling functionality of OpenCL, and rendered
every configuration at least five times. In total, we conducted
more than 25 million measurements with over five million distinct
configurations.

5.3 Discussion of our Measurements
First, we look at the overall distribution of all kernel execution
times of our volume raycaster (Fig. 3, left). This includes all
measurements, but we took the median of the execution times for
measurements with the same configuration. Differences between
runs with the same configuration are generally very small (mean
standard deviation of 0.002 s). Sometimes, the first run deviates
slightly from the others (especially on AMD GPUs), which can
probably be attributed to caching effects of the kernel. Applying
a logarithmic scaling on the measured execution times reveals a
log-normal nature of the distribution (Fig. 3, right). To verify this,
we performed a one-sample Kolmogorov-Smirnov test on the data,



6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX

Fig. 4: Pearson correlation coefficients as boxplot for all measured
factors and camera rotation/distance, influencing the volume
rendering.

which rejected the null hypothesis of the sample coming from
a log-normal distribution (D = 0.78, p < 2.2 ·10−16). On the one
hand, there are some visible deviations in the tails (see Fig. 3),
on the other hand, it is a known problem of the test becoming
very sensitive to even small deviations for large sample sizes like
ours (more than five million configurations). Although we cannot
claim statistical support for the assumption that the performance of
volume renderings is log-normal distributed, the visual inspection
of the histogram shows that it is very close. The global distribution
gives a general impression of the range and occurrence of the
execution times. However, this representation does not provide any
details about the influence of the different factors we varied in our
measurements.

Therefore, we proceed with investigating the correlation of
different factors with respect to the execution time (the target)
with the other values/categories from the respective factor. For
instance, we consider all timings obtained for the “NVIDIA TITAN
Xp” being one data set and all for the “AMD Radeon Vega FE”
being the other, and compute the Pearson correlation coefficient
between these two disjunctive data sets. The result gives us an
idea of whether there is a linear correlation between the rendering
performance of the two devices. If that would be the case, we
could conclude that the devices behave similarly for all test cases
except for a linear scaling factor and offset. We compute such a
correlation for all pairs of different values of a single factor, which
yields a correlation matrix (e.g., Fig. 5) and repeat this procedure
for every factor we tested, i.e., we calculate one such correlation
matrix per factor. Fig. 4 gives an aggregated overview of all those
matrices: each single box in this boxplot represents the distribution
of all correlation factors within one matrix. This yields one box per
tested factor. That is, high values in this diagram indicate that there
is generally a high linear correlation between all pairs of levels
of the respective factor. We also calculated separate correlation
matrices for camera rotation and camera distance, which we added
to the boxplot as well to compare against the camera path factor.

Looking at the means of the correlation coefficients, we see
that the employed volume data set has the highest variance and
lowest correlation calculated (also the factor with the highest
number of different values in our measurement), followed by the
camera path. While the step size has a very high correlation among
different values, there is also some noticeable variation for the
viewport. We attribute this effect to performance deviations caused
by oversampling of the smaller data sets (i.e. neighboring rays

Fig. 5: Matrix showing Pearson correlation coefficients among
different measured GPUs for volume raycasting.

Fig. 6: Speed-up for volume raycasting on different GPUs relative
to the AMD Radeon Vega FE. Error bars indicate uncertainty.

get very cheap due to caching effects). The binary factors for our
acceleration techniques and transfer functions have a medium to
high correlation. They are closely linked to the data set structure.
Interestingly, all devices show a very predictable behavior in terms
of performance.

For investigating the correlation factors more closely, we can
plot the correlation matrix as a heat map. Fig. 5 shows such a
correlation heat map for the device factor, i.e. the different GPUs.
Notably, the linear correlations between the tested AMD GPUs are
almost 1.0 in all cases, while the correlations with the NVIDIA
cards are still very high, with factors above 0.95 in all cases.

The factors can further be classified into four categories. The
first one being the hardware (in our case GPUs), the second one
the numeric sampling parameters in image space and object space
(viewport resolution and step size along the ray), and the third one
the camera parameters, which are covered by the different paths in
our measurements. The four remaining factors can be combined
to a category defining the data structure, because the data set
combined with a transfer function may be seen as just another data



BRUDER et al.: ON EVALUATING RUNTIME PERFORMANCE OF INTERACTIVE VISUALIZATIONS 7

Fig. 7: Speed-up for volume raycasting using different camera
paths relative to the orbit around the x-axis. Error bars indicate
uncertainty.

structure. One may also argue that different camera parameters are
also a form of distinctive data representations, respective structures.
That means, by changing the camera perspective, we “generate” a
new structure, through processing only parts of the original data
and changing the behavior/impact of ERT and ESS. Therefore, a
reduction of the four categories to three (adding camera to data
structure) is also possible.

In terms of those categories, the determined correlation coef-
ficients imply that using different hardware results in comparably
predictable behavior as well as the sampling factors (with some
limitations in the form of the viewport). The camera parameters
show significantly bigger deviations, while factors related to the
volume data structure have the lowest correlation among one
another. Therefore, we conclude that the data set structure is the
most important factor for performance quantification in our volume
raycasting application.

To validate this conclusion, we separate the data based on all
factors related to the volume data structure as discussed above: data
set, transfer function, acceleration techniques and camera. We then
apply a simple linear regression on a training subset of the data.
When testing the resulting model, we achieve an average coefficient
of determination of R2 = 0.894 across all data sets, with a minimum
of R2

min = 0.756 and a maximum of R2
max = 0.940. In order to

generate a reference, we used random forest regression. Using
this more advanced machine learning technique, we were able to
achieve a coefficient of determination of R2 = 0.982. However, it
is not the objective of this paper to accurately predict execution
timings. We deliberately chose the simple linear regression to
show and to understand simple relations in the data, which is not
necessarily possible with advanced machine learning techniques,
such as random forests or neural networks. Fig. 6 and Fig. 7 show
the linear relation for all tested GPUs as well as camera paths.
Here, the error bars indicate uncertainty and are calculated using
error = (1− r) · s, with s being the slope of the regression and r
the correlation coefficient.

Based on these findings, we were interested in two additional
aspects: a detailed look into the volume data sets, which showed
the highest variation among all features, and the influence of the

Fig. 8: Mean frame time (seconds) for rendering the volume data
sets, using different camera paths.

camera parametrization on performance.
To accomplish the former, we measured the performance of

a stack of down-sampled data sets (i.e., aggregating 23,24,28, . . .
neighboring voxels). As an example, we used the Chameleon data
set with an original resolution of 10243 voxels and created seven
down-sampled variants, the smallest one having a resolution of
1283 voxels. Investigating the correlation matrix of those data
sets showed a minimum coefficient of 0.85 (between the highest
and the lowest resolutions), with a mean value of 0.97 for all
combinations. Another example using the Zeiss data set with an
original resolution of 6403 and six down-samplings showed similar
results, with a mean correlation coefficient of 0.99 a minimum
of 0.96. These results suggest that the structure of the data set
is mainly responsible for the variance in performance behavior.
However, there might be cases where a high resolution data set has
distinct performance characteristics from a down sampled version
of the data. For instance, this could be the case if fine structures
or noise in the original data get averaged out in a down-sampled
version and therefore result in faster rendering times.

Fig. 8 shows a heat map for the execution time means of all
data sets when using a specific camera path. It shows that the per-
formance deviation are comparably high for several combinations,
which motivated us to further investigate the performance behavior
for different camera parameters. Therefore, we calculated Pearson
correlation coefficient matrices for solely the rotation respectively
the distance to the center of the bounding box of the volume data
set. For the former, we used the samples from the camera path
doing a full orbit around the y-axis. For the latter, we took the
samples of the straight camera paths along the three major axes.
Different positions among the orbit showed a mean correlation
of 0.88, with the minimum being 0.68 (cf. Fig. 4). Besides the
structure, shape, and spacing of a data set, memory access patterns
and caching influences performance during rotation around a data
set in texture-based volume rendering [62], [68].

For the distance to the volume (i.e., zoom into the data set),
the mean of the correlation coefficients was lower compared to
the one for rotation, at 0.83. Notably, the lowest factor was 0.54:
it is the correlation factor between the camera configuration with
the shortest distance to the center and the configuration with the
highest distance. Overall, correlation to other camera configurations
decreases with decreasing distances to the center. This suggests a
higher divergence in performance behavior between zooming into
a volume than circling around it.

We also performed several two-sample, two-sided Kolmogorov-
Smirnov tests to analyze whether the intuitive choice of rotating the
camera around the data is representative for a wider range of views
in the sense that the sample comes from the same distribution as



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX

TABLE 4: Performance Evaluations in Recent Selected Particle
and Molecular Rendering Papers.

Authors Year GPUsb Viewports Data Views
sets

Müller et al. [52] 2018 H 1 5 5×?c

Ibrahim et al. [28] 2018 N 1 6 2
Hermosilla et al. [24] 2017 N 1 9 512
Jurčı́k et al. [31] 2016 N 1 4 1
Skånberg et al. [58] 2016 N 1 4 1
Grottel et al. [15] 2015 N –a 3 –a

Wald et al. [67] 2015 4×I 1 7 2
Guo et al. [19] 2015 4×N 1 2 7
Knoll et al. [34] 2014 2×I, N 1 8 2
Le Muzic et al. [44] 2014 N 1 1 1
Grottel et al. [16] 2012 N 1 6 1
Lindow et al. [46] 2012 N 1 7 rot.
Chavent et al. [8] 2011 4×N 1 12 1
Lindow et al. [47] 2010 2×N 1 5 –a

Grottel et al. [17] 2010 N 1 5 4
Krone et al. [37] 2009 N 1 10 1
Falk et al. [11] 2009 N 1 6 2
Lampe et al. [40] 2007 N 1 6 –a

Gribble et al. [14] 2007 1×O 2 6 1
Tarini et al. [64] 2006 1×A –a ≥ 2 –a

Reina & Ertl [53] 2005 3×N –a 4 ≥ 2
Klein & Ertl [33] 2004 N 1 1 –a

Gumhold [18] 2003 N, A –a 1 –a

a Property not mentioned in the paper.
b A = ATI/AMD GPU, H = HoloLens, I = Intel many-core CPU or Xeon

Phi, N = NVIDIA GPU, O = Opteron CPU.
c Multiple camera paths with variable number of frames.

all views. For both orbit paths, the test rejected the null hypothesis
(D = 0.09, p < 2.2 ·10−16 for orbitx and D = 0.04, p < 2.2 ·10−16

for orbity) whereas it rejected it for none of 100 randomly chosen
samples of the same size (approx. 1.1 m), with p-values ranging
between 0.051 and 0.997 (mean 0.644, median 0.686).

6 CASE STUDY 2: PARTICLE VISUALIZATION

In our second case study, we examine particle rendering in the
form of several different techniques of raycasting sprites. Those
techniques are often used for visualizing particle-based data sets
such as molecular dynamics simulations.

6.1 Common Practice
Table 4 shows a summary of the evaluation techniques used in
publications on particle-based visualization over the last decade. It
can be seen that the authors mostly focused on varying the data
sets, while in most cases only one GPU and one viewport size
were tested. Information about the camera was rarely mentioned,
especially in older publications. More recently, the camera was
oftentimes adjusted such that the data set fits the available screen
area [16], [31], [37]. Other authors complemented this overview
rendering with a close-up [11], [44], [53], sometimes including
the actual renderings for said views for reference [14], [34], [67].
In three cases [17], [44], [46], the authors used knowledge about
their algorithm and placed the camera in the assumed worst-case
position. Performance numbers for a larger number of camera
positions are rarely reported. If so, rotations around the data sets are
used [46] that can also be complemented by fly-through paths [52].
Hermosilla et al. [24], as an exception, report averaged frame rates
from random camera positions on a sphere around the data set.

The predominant measure used in basically all cases are frames
per second, as in the volume rendering case. An exception is the

TABLE 5: Techniques and Required Shader Stages Used for
Particle Rendering.

Technique Active shader stages* Unique factors

Screen-aligned quad VS, GS, PS
Ray-aligned quad VS, GS, PS
Instanced quad VS, PS color conversion
Ray-aligned quad VS, HS, DS, PS
Ray-aligned polygon VS, HS, DS, PS corners (4–8, 16, 32)
Adaptive polygon VS, HS, DS, PS allowed corners (4–16)

* Bold face marks the shader stage used to compute the sprites.
V = Vertex, G = Geometry, H = Hull, D = Domain, P = Pixel shaders.

work of Gumhold [18], who reported for a series of different
data set sizes the number of ellipsoids rendered per second along
with the number of fragments filled per second. Frame rates were
sometimes complemented by detailed performance information
regarding individual steps of the algorithm [17], [19], [28], [34],
[37], [47]. These were typically reported in milliseconds. Relative
speed-ups [14], [47] were less common and normally given if a
new technique was compared to an existing one [8], [15], [31],
[34], [40], [46]. Besides timings, bandwidth [17], [40] and memory
requirements [34], [46], [67] were reported from time to time.
Müller et al. [52] also included data from pipeline statistics queries
like the number of shader invocations or the geometry load.

While some authors provided quite detailed explanations about
certain performance characteristics and their causes [34], [67] or
compared several variants of their technique [11], [16], [37], [58],
only the works of Grottel et al. [17] and Müller et al. [52] presented
systematic performance studies. The former investigated different
techniques to transfer data from main memory to the GPU, data
quantization, two culling techniques and deferred shading, and the
combinations thereof. The reported results did not only include
frame rates but also statistics such as the visible data after culling.
The latter concerned themselves with comparing the performance
of different shader-based methods of rendering spherical glyphs on
Microsoft HoloLens.

The parameters tested in the assessed common pratice are
largely similar to the volume rendering case: GPUs, viewports, data
sets, and camera paths. Among others, this allows us to compare
across experiments. As there are many different techniques and
variants used to perform particle rendering, we focus on evaluating
them to help understanding the differences. Additionally, we test
rendering specific parameters such as using conservative depth.

6.2 Our Test Implementation

We based our test implementation on the Direct3D 11 API, because
the predominant technique for rendering particle data sets as spher-
ical glyphs nowadays is computing the ray-sphere intersections
on sprites, which requires an API supporting rasterization. In
our experiment, we evaluated several variants of this GPU-based
raycasting, which are implemented via modified pixel shaders.
Our tests include a series of techniques for generating the sprites.
Table 5 shows an overview of all those rendering techniques along
with specific factors that might influence the rendering performance
of the technique. They differ in the usage of quads or polygons, the
alignment of quads, the use of instancing, the active shader stages,
and the shaders used for computing the sprites. The instanced-
based approach differs from all others in that it does not obtain
its data (position, radius, and color of the particles) from a vertex



BRUDER et al.: ON EVALUATING RUNTIME PERFORMANCE OF INTERACTIVE VISUALIZATIONS 9

Fig. 9: The particle data sets from molecular dynamics simulations used in our tests. From left to right, these are a small test run (1,000
particles), three droplets (79,509 particles), the formation of a liquid layer (2,000,000 particles), a laser ablation (6,185,166 particles) and
10,000,000 particles. The last image shows one of the randomly generated data sets with 100,000 particles.

buffer. Instead, data is obtained from a structured resource view,
which is accessed based on the instance ID. The vertices for the
instances are not stored in a vertex buffer, but computed on-the-fly
from the vertex ID. The ray-sphere intersection itself is always
computed in the pixel shader. For all tests using particles without
a color, but with an intensity value, we also tested the transfer
function lookup in the vertex and pixel shaders regardless of
the technique. Additionally, we tested conservative depth output
enabled and disabled for all techniques. Conservative depth output
allows the GPU to perform early z-culling even as we are writing
the correct depth of the ray-sphere intersection point computed
in the pixel shader. This way, many fragments in dense data sets
can be discarded before invoking the pixel shader. However, the
effect varies with the position of the camera because the order
in which particles are emitted depends on the fixed layout of the
vertex buffer, not on the view. Therefore, the amount of overdraw
and the order in which it happens – and in turn the number of
fragments discarded early – are view-dependent.

As in the volume rendering case, we used quadratic viewports of
5122, 10242 and 20482 pixels. The camera was moved in ten steps
along different paths, namely diagonalx/y/z, orbitx/y, pathx/y/z
and pathsinx/y/z. We measured the particle rendering on the same
systems listed in Table 1 that we used for the volume rendering,
except the ones marked with an asterisk.

Our tests included five real-world data sets (cf. Fig. 9) and
21 artificial ones with uniformly distributed particles in a 103

bounding box. The latter form mainly two series: the first one
contains 10k,k ∈ {3,4,5,6} particles, each having approximately
the same fraction of the bounding box filled (i.e., the size of the
particles decrease as the number of particles increase). The second
series always comprises 100,000 particles but their size increases
over three steps, i.e., more of the bounding box is filled increasing
the overdraw that occurs during raycasting. All artificial data sets
were tested with RGBA8 and RGBA32 coloring and intensity only.

For each test configuration, we obtained mainly two data points:
GPU timings measured with a timestamp query injected into the
command stream and the wall clock time measured with the high-
resolution timer on the CPU. The rationale behind this is that we
wanted to compare the timestamp queries, which measure very
short periods of time, with the averaged CPU timings, which
should expose less variation. Additionally, we obtained the number
of shader invocations for each configuration by issuing a query
for pipeline statistics. Before the actual test run, we performed
at least four pre-warming renderings, which are not included in
the result. These served mainly two purposes: the first frame after
switching shaders is usually particularly slow and therefore should
be excluded from the result for not being representative. At the
same time, the system computed from the pre-warming renderings
how many frames need to be rendered such that the wall time
measurements cover at least 100 ms. The actual measurements

(a) Time stamp queries (b) Wall clock time

Fig. 10: Distribution of the logarithmically scaled timestamp
queries (a) and wall clock times (b), of the particle renderings.
The red lines mark the mean, whereas the black lines show a fitted
log-normal distribution.

were then performed in three separate steps: first, we rendered
eight frames and obtained the timestamp query results for them.
Unless denoted otherwise, the GPU times reported subsequently
are the medians of these eight measurements. The difference
between the minimum and maximum time for one measurement
ranges between 0 ms and 1,385 ms (mean 0.16 ms). Second, we
obtained the pipeline statistics by rendering the same configuration
again. And finally, we rendered the number of frames computed
beforehand to measure the wall time. As we completely rely on
rendering to off-screen targets, which lacks the buffer swap as
synchronization point, we stalled the CPU by waiting for an event
query injected into the command stream after the last frame. Wall
clock times in the following are the time between the first frame
and the point when the event query returned, divided by the number
of frames rendered during this period.

6.3 Discussion of our Measurements
We begin by looking at the histogram of GPU (Fig. 10a) and
CPU (Fig. 10b) timings from all measurements. The applied
logarithmic scale shows that the distribution vaguely resembles
a log-normal one, but the fit is not as good for the volume
rendering case. Given the histogram and the sample size of more
than 3.3 million measurements, it is not surprising that a one-
sample Kolmogorov-Smirnov test rejected log-normal distribution
(D = 0.25, p < 2.2 ·10−16). Fig. 10 also shows that there are small
differences in the distribution of GPU time stamp queries and
wall clock measurements, but both histograms have approximately
the same spikes and a similar mean. These spikes could either
result from particle rendering generally not being log-normal
distributed or from our test cases not sampling the parameter
space sufficiently well. We reckon that the selection of the data
sets is an important factor here, because we mainly sample based



10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX

Fig. 11: Means of Pearson correlation coefficient for five selected
factors influencing the rendering speed of the particle data sets.

on orders of magnitude and not evenly distributed numbers of
particles. Data set sizes of 100,000 particles are over-represented
in the results and account for more than half of the observations in
Fig. 10, because the series of tests for different sphere sizes uses
this number of particles. The other artificial data sets comprising
1000 and 10,000 particles further add to a large imbalance of data
sets below 1 million particles, which has a notable influence on the
shape of the histogram.

Akin to the analysis of the volume rendering data, we investi-
gated the mean correlation between the different levels of factors,
such as the device, the viewport, etc. (cf. Fig. 11). Again, we
see that there is a strong linear relationship between all devices,
i.e. the behavior of the GPUs is generally the same for all tests.
The correlation between the data sets is generally higher than
for the volume rendering case, but there is a lot of variation and
there are some outliers: both effects can be explained by the
large number of artificial data sets in the test. The performance
behavior of these seems to be largely the same with respect to the
other factors with correlation factors close to one. One notable
exception are the data sets with very small radii, which result in
particles being represented by a single pixel in the majority of
views. Their correlation factor with the other artificial data sets
is only around 0.72 (cf. Fig. 12). The data sets from simulations
naturally exhibit more variation, most notably the 79,509 particles
that form three drops and therefore differ from all other data in
that a large fraction of the bounding box is actually empty. This
data set has a correlation factor of around 0.43 with most other
data sets, except for the laser ablation (0.18) and the liquid layer
formation (0.05). The latter has a Pearson correlation of around
0.39 with most other data sets and is special in the sense that it
is the only data set with a strongly non-cubic bounding box, i.e.
the path along the z-axis is much longer than along the other two.
The two factors showing the least correlation on average, and in
turn the greatest variance, are the rendering method and the camera
path. While the methods based on sprites aligned with the view
ray mostly have correlation factors above 0.9 among each other,
the screen-aligned one lies around 0.7 depending on the method
compared. The camera paths (Fig. 13) exhibit similar results: the

Fig. 12: Matrix of the Pearson correlation factors between tim-
ings for different particle data sets. Numbers omitted for better
readability.

paths along the axis (straight and sine) reach 0.96 or higher, while
the two orbits yield around 0.9 with the other methods (comparing
the orbits yields a 1.0). We found that the underlying root cause
for both of these two observations is that the screen-aligned sprites
can cause significantly more overdraw if the camera is close to
a sphere. This can be measured via the number of pixel shader
invocations that is an order of magnitude above the one for the
ray-aligned sprites. While the ray-aligned quads can be clipped
against the front plane (causing visual artifacts), the screen-aligned
ones become larger as a sphere comes closer and are only clipped
at once if they reach the front plane. Furthermore, depending on
the radius of the sphere, the camera position and the clipping
planes, the method might also generate sprites for back faces of
spheres, which generate no fragment in the end. Obviously, this
effect cannot occur if the camera is outside of the bounding box,
which is the case for the orbit paths.

We assumed that the radius of the spheres plays an important
role for this effect, we further investigated the rendering times of
all methods depending on the data sets. Fig. 14 reveals that this
is actually the case: the high overdraw of screen-aligned quads
becomes only a relevant factor if the number of particles is high
or, in case of the artificial data sets, if the radius is – compared to
real-world applications – unnaturally high. The matrix also shows
that the generation of view-aligned quads performs almost the same
for all data sets, only if the number of particles becomes very large,
tessellation-based methods become slightly slower.

Given this observation, it is clear that an orbit path cannot
be representative for the entirety of the views. We performed a
two-sample Kolmogorov-Smirnov test, which rejected that both
orbit paths have the same distribution as population of all views
(D = 0.03, p < 2.2 · 10−16 for orbitx and orbity). Again, we took
100 random samples of the same size (more than 300 k), for most
of which the test did not reject the null hypothesis of the same
underlying populations. The p-values ranged from 0.017 to 0.999
(mean 0.605, median 0.658).



BRUDER et al.: ON EVALUATING RUNTIME PERFORMANCE OF INTERACTIVE VISUALIZATIONS 11

Fig. 13: Matrix of the Pearson correlation factor between the
timings for different camera paths through the particle data sets.

Fig. 14: Mean frame time (in milliseconds) for the particle data sets
rendered using different sprite-based sphere rendering techniques.

7 DISCUSSION AND LESSONS LEARNED

One rather obvious conclusion we draw from our experiments
is that specifying minimum and maximum values as well as
percentiles along with average fps or frame times is desirable,
although seldom done in practice. For instance, when performing
a fully accelerated volume raycasting of the “Mandelbulb” on
an NVIDIA TITAN Xp, the mean of 0.0456 s implies a decently
interactive frame rate of 21 fps, but the 75th percentile is actually
0.0746 s and the 90th percentile only 0.1227 s. However, none of
the reviewed papers give percentiles, many of them only report
average fps.

Given the amount of measurements we obtained in two different
areas of visualization, we believe it is reasonably safe to conclude
that the typical approach of testing only one device (done by≈ 83%
of the reviewed papers) seems to be largely valid for most cases.
There might be exceptions in case of different device types (CPU
vs. GPU) or disruptive technology changes enabling different kinds
of algorithms. However, we found a linear behavior even across
different memory technologies, architectures and vendors for the
same algorithm.

Authors from both application areas oftentimes use different
data sets for their evaluation: ≈ 89% in the reviewed volume
rendering papers and ≈ 87% in the particle rendering ones. In
our studies, we could confirm that this is important due to their
generally significant impact on performance. However, in the case
study on particle rendering, we found that measurements with
artificially generated data sets must be handled with care. Real-

world data usually have complex internal shapes influenced by
many parameters, making it difficult to decide which parameters
should be used in which way to generate test data. Furthermore,
designing data sets with a specific property in mind that is to be
tested, can cause an undesired bias in the distribution of the results.
In hindsight, we would recommend separating the corpus of data
sets for describing general performance characteristics and the ones
for closer investigation of a priori known effects. However, more
realistic performance characteristics when using artificial data could
possibly be achieved with generative data models [57]. By using
them, a potential scarcity of data sets could be circumvented, there
is even the possibility of finding a small set of generated data sets
that represents most of the common performance characteristics.

The camera parameters proved to have an equally high impact
in both of our tests. However, evaluations in papers oftentimes
only use a low number of view points. About 58% of the papers
that actually report the number of views (which are only half
the papers) use less than eight different camera configurations.
Therefore, it is particularly desirable that a systematic performance
evaluation explicitly states the respective configuration, and that a
variety of different camera configurations are considered. Almost
all reviewed papers that report on evaluating more than eight
views perform some form of intuitive camera paths, e.g., rotations
around the bounding box or recorded user interactions. We found
that using those intuitive choices might be insufficient. Insofar, it
might be sensible to test a number of randomly chosen camera
poses – filtered in a way that a reasonable portion of the data is
visible. Although random camera parameters are not a realistic
usage scenario, using them for measurement has the advantage
that the overall distribution and performance characteristics can be
covered with less samples, thus freeing resources for measuring
other parameters. This is also an area in which we intend to
continue our work: measuring randomly chosen, but meaningful
views to determine whether this has an influence on the overall
distribution of rendering times and how many views are required
to obtain a representative set of measurements. Another way to
improve performance evaluation in this area would be an empirical
collection of typical camera paths for specific application areas.
A public repository of such common interaction sequences could
serve as input to improve the evaluation.

7.1 Best Practices

From our results, we derived the following set of best practices for
the performance evaluation of interactive scientific visualization
techniques in single node environments:
• Report performance distributions instead of a single frames-

per-second value (or report at least frame rates for different
percentiles).

• Report all important factors that have an influence on the
performance. Our literature review shows that factors like the
viewport size seem to be so obvious to the authors that they
are often missing in the exposition.

• Generally, one system for testing seems sufficient to report
performance properties, if the software is not tailored towards
special hardware characteristics like specific memory hierar-
chies.

• Multiple (meaningful) random camera configurations should
be used for measurements. While these might not be represen-
tative for the actual interactions of a user in a specific scenario,
they allow for a comprehensive general assessment. Typically,



12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX

they yield much more expressive results in comparison to
using just a single view point or a single path.

• Optimally, a large variety of (real-world) data sets and/or
different shape-defining properties (such as transfer functions
in volume rendering) should be measured. This is particu-
larly important when acceleration techniques are used, as
their performance results typically strongly depends on data
characteristics.

Note that this list is only a rough guideline addressing several
properties that we discovered during our data analysis. Although
we believe that they are a good starting point, the importance
and portability may vary depending on the specific visualization
application and domain. We consciously tried to keep these
recommendations as general as possible, while also providing
a guideline on how to improve performance evaluation.

7.2 Limitations

Besides the still limited number of camera poses we have tested,
there are several limitations to our current approach: we restricted
all of our measurements to interactive algorithms running on a
single GPU and no out-of-core handling. Furthermore, we collected
measurements for only one dimension – the rendering times –
while there are many other dimensions that might be interesting
or necessary for a detailed evaluation. For instance, the Direct3D
pipeline statistics with the pixel shader invocations proved to be
very helpful for interpreting certain effects in the results from the
particle test runs.

Given the sheer amount of data, we followed a top-down
exploratory approach, but investigating correlations between factors
is still at such a high level that potentially interesting individual
outliers are hard to find. Also, we only analyzed whether there
is a linear or no correlation, which is sufficient to describe the
influence of a factor in principle and to derive some guidelines on
how to handle this factor. However, we cannot find out whether
only certain expressions of a factor influence others this way, e.g.,
if an optimization has only an impact on a subset of the data sets
or in other specific parameter configurations.

8 CONCLUSION AND FUTURE WORK

We investigated the current approach on performance quantification
in scientific visualization by reviewing respective efforts in related
work and comparing these methods to an extensive measurement
approach. Thereby, we evaluated volume rendering and particle
rendering, two established fields in scientific visualization, in
which the commonly employed basic algorithms feature distinctive
properties. An in-depth analysis of our measurement data, which
comes from the – to our knowledge – largest systematic series
of performance measurements of different scientific visualization
applications, showed several characteristics and commonalities
between the two cases. Based on those we are now able to answer
the questions asked in the introduction, to some extent: Which
are the most important performance factors, how big should a
subset size be, and are there typical correlations of factors? We
summarize our findings in a list of best practices, that can be seen
as a guideline for empirical performance evaluation of interactive
scientific visualization techniques.

We believe that our work is just a first step towards a better
understanding of how the performance of scientific visualization
applications behaves at large and therefore think it opens up

multiple directions for future work. Foremost, we plan to extend
our approach to parallel and out-of-core techniques of the two use
cases and other domains in visualization beyond volume rendering
and particle rendering. Overall, the goal is to obtain a more general
understanding of performance quantification. We also want to
extend our current measurement series based on the insights we
gained so far. While we focused on frame times as a performance
metric in this work, there are many others that we would like to
consider in future work including, memory consumption, energy
usage, rendering quality, or even user satisfaction.

A key part of experimental measurements is the reproducibility
of the results, i.e. others should be able to redo and validate
them. We also think that it is important to share measurement
data, so that other researchers have the opportunity to explore
it and possibly gain new insights. Therefore, our benchmarking
framework as well as our measurement results are available at
http://trrojan.visus.uni-stuttgart.de. We plan to continuously expand
the data base, for instance, with measurements of additional camera
positions, hardware, and other visual computing applications.

ACKNOWLEDGEMENT

The authors would like to thank the German Research Foundation
(DFG) for supporting the project within the projects A02 and INF
of SFB/Transregio 161.

REFERENCES

[1] M. Ament and C. Dachsbacher. Anisotropic ambient volume shading.
IEEE Transactions on Visualization and Computer Graphics, 22(1):1015–
1024, 2016.

[2] C. Bentes, B. B. Labronici, L. M. Drummond, and R. Farias. Towards an
efficient parallel raycasting of unstructured volumetric data on distributed
environments. Cluster Computing, 17(2):423–439, June 2014.

[3] E. W. Bethel and M. Howison. Multi-core and many-core shared-
memory parallel raycasting volume rendering optimization and tuning.
International Journal of High Performance Computing Applications,
26(4):399–412, Nov. 2012.

[4] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-art in GPU-based
large-scale volume visualization. Computer Graphics Forum, 34(8):13–37.

[5] I. Bowman, J. Shalf, K.-L. Ma, and W. Bethel. Performance modeling for
3D visualization in a heterogeneous computing environment. Technical
report, Lawrence Berkeley National Laboratory, 2004.

[6] S. Bruckner and M. E. Gröller. Volumeshop: An interactive system
for direct volume illustration. In Proc. IEEE Visualization 2005, pages
671–678, 2005.

[7] V. Bruder, S. Frey, and T. Ertl. Real-time performance prediction and
tuning for interactive volume raycasting. In SIGGRAPH ASIA 2016
Symposium on Visualization, SA ’16, pages 7:1–7:8. ACM, 2016.

[8] M. Chavent, A. Vanel, A. Tek, B. Levy, S. Robert, B. Raffin, and
M. Baaden. GPU-accelerated atom and dynamic bond visualization
using hyperballs: A unified algorithm for balls, sticks, and hyperboloids.
J. Comput. Chem., 32(13):2924–2935, 2011.

[9] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. S. GPU-stream
v2.0: Benchmarking the achievable memory bandwidth of many-core
processors across diverse parallel programming models. In International
Conference on High Performance Computing, pages 489–507, 2016.

[10] Z.-y. Ding, J.-g. Tan, X.-y. Wu, W.-f. Chen, F.-r. Wu, X. Li, and W. Chen. A
near lossless compression domain volume rendering algorithm for floating-
point time-varying volume data. Journal of Visualization, 18(2):147–157,
2015.

[11] M. Falk, M. Klann, M. Reuss, and T. Ertl. Visualization of signal
transduction processes in the crowded environment of the cell. In Proc.
PacificVis 2009, pages 169–176, 2009.

[12] D. G. Feitelson. Experimental computer science: The need for a cultural
change. 2006.

[13] S. Frey, F. Sadlo, K.-L. Ma, and T. Ertl. Interactive progressive
visualization with space-time error control. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2397–2406, 2014.



BRUDER et al.: ON EVALUATING RUNTIME PERFORMANCE OF INTERACTIVE VISUALIZATIONS 13

[14] C. P. Gribble, T. Ize, A. Kensler, I. Wald, and S. G. Parker. A coherent
grid traversal approach to visualizing particle-based simulation data. IEEE
Transactions on Visualization and Computer Graphics, 13(4):758–768,
2007.

[15] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. Megamol – a
prototyping framework for particle-based visualization. IEEE Transactions
on Visualization and Computer Graphics, 21(2):201–214, 2015.

[16] S. Grottel, M. Krone, K. Scharnowski, and T. Ertl. Object-space ambient
occlusion for molecular dynamics. In Proc. PacificVis, pages 209–216,
2012.

[17] S. Grottel, G. Reina, C. Dachsbacher, and T. Ertl. Coherent culling
and shading for large molecular dynamics visualization. In Computer
Graphics Forum, volume 29, pages 953–962, 2010.

[18] S. Gumhold. Splatting illuminated ellipsoids with depth correction. In
Proc. Symposium on Vision, Modeling and Visualization 2003, pages
245–252, 2003.

[19] D. Guo, J. Nie, M. Liang, Y. Wang, Y. Wang, and Z. Hu. View-
dependent level-of-detail abstraction for interactive atomistic visualization
of biological structures. Computers & Graphics, 52:62 – 71, 2015.

[20] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister.
Sparseleap: Efficient empty space skipping for large-scale volume
rendering. IEEE Transactions on Visualization and Computer Graphics,
24(1):974–983, 2018.

[21] M. Hadwiger, F. Laura, C. Rezk-Salama, T. Höllt, G. Geier, and T. Pabel.
Interactive volume exploration for feature detection and quantification
in industrial ct data. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1507–1514, 2008.

[22] M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski. Advanced
illumination techniques for GPU-based volume raycasting. In SIGGRAPH
Courses, pages 2:1–2:166, 2009.

[23] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed particle
hydrodynamics on GPUs. In Computer Graphics International, volume 40,
pages 63–70. SBC Petropolis, 2007.

[24] P. Hermosilla, M. Krone, V. Guallar, P.-P. Vázquez, A. Vinacua, and
T. Ropinski. Interactive GPU-based generation of solvent-excluded
surfaces. Vis. Comput., 33(6-8):869–881, 2017.

[25] F. Hernell, P. Ljung, and A. Ynnerman. Local ambient occlusion in direct
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 16(4):548–559, 2010.

[26] R. Hero, C. Ho, and K.-L. Ma. Volume rendering of curvilinear-grid
data using low-dimensional deformation textures. IEEE Transactions on
Visualization and Computer Graphics, 20(9):1330–1343, 2014.

[27] S. Hong and H. Kim. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. SIGARCH Comput.
Archit. News, 37(3):152–163, June 2009.

[28] M. Ibrahim, P. Wickenhäuser, P. Rautek, G. Reina, and M. Hadwiger.
Screen-space normal distribution function caching for consistent multi-
resolution rendering of large particle data. IEEE Transactions on
Visualization and Computer Graphics, 24(1):944–953, 2018.

[29] D. Jönsson, J. Kronander, T. Ropinski, and A. Ynnerman. Historygrams:
Enabling interactive global illumination in direct volume rendering using
photon mapping. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2364–2371, 2012.

[30] D. Jönsson and A. Ynnerman. Correlated photon mapping for interactive
global illumination of time-varying volumetric data. IEEE Transactions
on Visualization and Computer Graphics, 23(1):901–910, 2017.

[31] A. Jurčı́k, J. Parulek, J. Sochor, and B. Kozlikova. Accelerated
visualization of transparent molecular surfaces in molecular dynamics. In
Proc. PacificVis 2016, pages 112–119, 2016.

[32] P. Kipfer, M. Segal, and R. Westermann. Uberflow: a GPU-based particle
engine. In Proc. Graphics Hardware 2004, pages 115–122. ACM, 2004.

[33] T. Klein and T. Ertl. Illustrating magnetic field lines using a discrete
particle model. In Proc. Symposium on Vision, Modeling and Visualization,
volume 4, pages 387–394, 2004.

[34] A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M. E. Papka, and
K. Gaither. RBF volume ray casting on multicore and manycore CPUs.
In Computer Graphics Forum, volume 33, pages 71–80, 2014.

[35] E. Konstantinidis and Y. Cotronis. A practical performance model
for compute and memory bound GPU kernels. In Proc. Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, pages 651–658, 2015.

[36] J. Kronander, D. Jonsson, J. Low, P. Ljung, A. Ynnerman, and J. Unger.
Efficient visibility encoding for dynamic illumination in direct volume
rendering. IEEE Transactions on Visualization and Computer Graphics,
18(3):447–462, 2012.

[37] M. Krone, K. Bidmon, and T. Ertl. Interactive visualization of molecular
surface dynamics. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1391–1398, 2009.

[38] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In Proc. IEEE Visualization, 2003.

[39] J. H. Krüger and R. Westermann. Acceleration techniques for GPU-based
volume rendering. IEEE Visualization, 2003. VIS 2003., pages 287–292,
2003.

[40] O. D. Lampe, I. Viola, N. Reuter, and H. Hauser. Two-level approach
to efficient visualization of protein dynamics. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1616–1623, 2007.

[41] R. S. Laramee. How to write a visualization research paper: A starting
point. In Computer Graphics Forum, volume 29, pages 2363–2371, 2010.

[42] M. Larsen, C. Harrison, J. Kress, D. Pugmire, J. S. Meredith, and H. Childs.
Performance modeling of in situ rendering. In High Performance
Computing, Networking, Storage and Analysis, SC16: International
Conference for, pages 276–287. IEEE, 2016.

[43] M. Larsen, S. Labasan, P. A. Navrátil, J. S. Meredith, and H. Childs.
Volume rendering via data-parallel primitives. In Proc. Eurographics
Symposium on Parallel Graphics and Visualization 2015, pages 53–62,
2015.

[44] M. Le Muzic, J. Parulek, A.-K. Stavrum, and I. Viola. Illustrative
visualization of molecular reactions using omniscient intelligence and
passive agents. In Computer Graphics Forum, volume 33, pages 141–150,
2014.

[45] B. Lee and Y.-G. Shin. Advanced interactive preintegrated volume
rendering with a power series. IEEE Transactions on Visualization and
Computer Graphics, 19(8):1264–1273, 2013.

[46] N. Lindow, D. Baum, and H.-C. Hege. Interactive rendering of materials
and biological structures on atomic and nanoscopic scale. In Computer
Graphics Forum, volume 31, pages 1325–1334, 2012.

[47] N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege. Accelerated
visualization of dynamic molecular surfaces. In Computer Graphics
Forum, volume 29, pages 943–952, 2010.

[48] B. Liu, G. J. Clapworthy, F. Dong, and E. C. Prakash. Octree rasterization:
accelerating high-quality out-of-core GPU volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 19(10):1732–1745,
2013.

[49] P. Ljung, C. Winskog, A. Persson, C. Lundstrom, and A. Ynnerman.
Full body virtual autopsies using a state-of-the-art volume rendering
pipeline. IEEE Transactions on Visualization and Computer Graphics,
12(5):869–876, 2006.

[50] C. Lundström, P. Ljung, A. Persson, and A. Ynnerman. Uncertainty
visualization in medical volume rendering using probabilistic animation.
IEEE Transactions on Visualization and Computer Graphics, 13(6):1648–
1655, 2007.

[51] J. G. Magnus and S. Bruckner. Interactive dynamic volume illumination
with refraction and caustics. IEEE Transactions on Visualization and
Computer Graphics, 24(1):984–993, 2018.

[52] C. Müller, M. Krone, M. Huber, V. Biener, D. Herr, S. Koch, G. Reina,
D. Weiskopf, and T. Ertl. Interactive molecular graphics for augmented
reality using hololens. Journal of Integrative Bioinformatics, 15, 2018.

[53] G. Reina and T. Ertl. Hardware-accelerated glyphs for mono- and dipoles
in molecular dynamics visualization. In Proc. EuroVis, pages 177–182,
2005.

[54] S. Rizzi, M. Hereld, J. A. Insley, M. E. Papka, T. D. Uram, and
V. Vishwanath. Performance modeling of vl3 volume rendering on GPU-
based clusters. In Proc. Eurographics Symposium on Parallel Graphics
and Visualization, pages 65–72, 2014.

[55] F. Sans and R. Carmona. Volume ray casting using different GPU based
parallel apis. In 2016 XLII Latin American Computing Conference (CLEI),
pages 1–11, Oct 2016.

[56] P. Schlegel, M. Makhinya, and R. Pajarola. Extinction-based shading
and illumination in GPU volume ray-casting. IEEE Transactions on
Visualization and Computer Graphics, 17(12):1795–1802, 2011.

[57] C. Schulz, A. Nocaj, M. El-Assady, S. Frey, M. Hlawatsch, M. Hund,
G. Karch, R. Netzel, C. Schätzle, M. Butt, et al. Generative data models
for validation and evaluation of visualization techniques. In Proc. of the
Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods
for Visualization 2016, pages 112–124. ACM, 2016.

[58] R. Skånberg, P.-P. Vázquez, V. Guallar, and T. Ropinski. Real-time
molecular visualization supporting diffuse interreflections and ambient
occlusion. IEEE Transactions on Visualization and Computer Graphics,
22(1):718–727, 2016.

[59] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A Simple and Flexible
Volume Rendering Framework for Graphics-Hardware–based Raycasting.
In Proc. Volume Graphics, pages 187–195, 2005.



14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX

[60] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible
volume rendering framework for graphics-hardware-based raycasting. In
Proc. Volume Graphics 2005, pages 187–241, 2005.

[61] J. E. Stone, J. Saam, D. J. Hardy, K. L. Vandivort, W.-m. W. Hwu,
and K. Schulten. High performance computation and interactive display
of molecular orbitals on GPUs and multi-core CPUs. In Proc. of 2nd
Workshop on General Purpose Processing on Graphics Processing Units
2009, pages 9–18. ACM, 2009.

[62] Y. Sugimoto, F. Ino, and K. Hagihara. Improving cache locality for
GPU-based volume rendering. Parallel Computing, 40(5-6):59–69, 2014.

[63] N. Tack, F. Morán, G. Lafruit, and R. Lauwereins. 3D graphics rendering
time modeling and control for mobile terminals. In Proc. of the ninth
international conference on 3D Web technology, pages 109–117, 2004.

[64] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge cueing
for enhancing real time molecular visualization. IEEE Transactions on
Visualization and Computer Graphics, 12(5):1237–1244, 2006.

[65] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz. Experimental
evaluation in computer science: A quantitative study. Journal of Systems
and Software, 28(1):9–18, 1995.

[66] G. Tkachev, S. Frey, C. Müller, V. Bruder, and T. Ertl. Prediction of
distributed volume visualization performance to support render hardware
acquisition. In Proc. Eurographics Symposium on Parallel Graphics and
Visualization 2017, 2017.

[67] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka.
CPU ray tracing large particle data with balanced pkd trees. In Scientific
Visualization Conference (SciVis), pages 57–64, 2015.

[68] J. Wang, F. Yang, and Y. Cao. A cache-friendly sampling strategy for
texture-based volume rendering on GPU. Visual Informatics, 1(2):92–105,
2017.

[69] M. Wimmer and P. Wonka. Rendering time estimation for real-time
rendering. In Proc. Eurographics Workshop on Rendering, pages 118–
129, 2003.

[70] K. Wu, A. Knoll, B. J. Isaac, H. Carr, and V. Pascucci. Direct multifield
volume ray casting of fiber surfaces. IEEE Transactions on Visualization
and Computer Graphics, 23:941–949, 2017.

[71] F. Yang, Q. Li, D. Xiang, Y. Cao, and J. Tian. A versatile optical model
for hybrid rendering of volume data. IEEE Transactions on visualization
and computer graphics, 18(6):925–937, 2012.

[72] T. Zhang, Z. Yi, J. Zheng, D. C. Liu, W.-M. Pang, Q. Wang, and
J. Qin. A clustering-based automatic transfer function design for volume
visualization. Mathematical Problems in Engineering, 2016.

[73] Y. Zhang and K.-L. Ma. Decoupled shading for real-time heterogeneous
volume illumination. In Computer Graphics Forum, volume 35, pages
401–410, 2016.

[74] Y. Zhang and J. D. Owens. A quantitative performance analysis model
for GPU architectures. In Proc. HPCA, pages 382–393, 2011.

[75] J. Zhou and M. Takatsuka. Automatic transfer function generation using
contour tree controlled residue flow model and color harmonics. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1481–1488,
2009.

Valentin Bruder received his Masters degree in
computer science from the University of Stuttgart,
Germany. He is a PhD student at the University of
Stuttgart Visualization Research Center (VISUS).
His research interests include new methods to
assess, model, and predict performance of visual
computing systems with a focus on scientific
visualization algorithms.

Christoph Müller received his diploma in com-
puter science from the University of Stuttgart,
Germany. He is a PhD student at the Visualization
Research Center of the University of Stuttgart
(VISUS). His research interests include graphics
clusters and tiled displays.

Steffen Frey received his PhD degree in com-
puter science from the University of Stuttgart,
Germany. Currently, he is a PostDoc at the Uni-
versity of Stuttgart Visualization Research Center
(VISUS). His research interests are in visual
analysis techniques for large and complex data
in scientific visualization, with a particular focus
on performance-related aspects and expressive
visual representations of dynamic processes.

Thomas Ertl received the MS degree in com-
puter science from the University of Colorado
at Boulder and the PhD degree in theoretical
astrophysics from the University of Tuebingen.
He is a full professor of computer science with
the University of Stuttgart, Germany, and the
head in the Visualization and Interactive Systems
Institute (VIS) and the Visualization Research
Center (VISUS). His research interests include
visualization, computer graphics, and human
computer interaction. He is a life fellow of the

IEEE.


