Balanced Sampling and Compression for Remote Visualization

Steffen Frey; Filip Sadlo] and Thomas Ertl*
*1: University of Stuttgart, {: Heidelberg University

O 0o
i
e

oo
T iteration 1 (full quality compression, sparse sampling) iteration 17 (balanced sampling and compression quality;

— 0,[0.2,066] — MSSSIM [0.78, 0.97]
- 0,7 [0.2,0.66) PSNR [25.0, 31.6]
— log,(a) [6.1,3.8] #samples [Ok, 708K]

-+ logy(a”) [-6.1,3.8] interupt

5

normalized range ([min, max])

20;

10
T iteration 23 (fine sampling, low compression quality) iterations

Figure 1: Our progressive remote visualization scheme adaptively places samples (right quarter of renderings). Sampling (#samples) and
compression rate () are adjusted such that the requested frame response latency is reached. We dynamically determine the best trade-off by
estimating the frame quality (G and 67) of the current and next iteration using regression analysis (cf. quality metrics PSNR and MSSSIM).

Abstract

We present a novel approach for handling sampling and compres-
sion in remote visualization in an integrative fashion. As adaptive
sampling and compression share the same underlying concepts and
criteria, the times spent for visualization and transfer can be balanced
directly to optimize the image quality that can be achieved within
a prescribed time window. Our dynamic adjustments regarding
adaptive sampling, compression, and balancing, employ regression
analysis-based error estimation which is carried out individually for
each image block of a visualization frame. Our approach is tuned
for high parallel efficiency in GPU-based remote visualization. We
demonstrate its utility within a prototypical remote volume visual-
ization pipeline by means of different datasets and configurations.

CR Categories: 1.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms 1.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Radiosity;

Keywords: remote visualization, adaptive volume rendering

1 Introduction

Remote visualization is an essential component at the intersection of
cloud, big data, and high-performance computing. Increasing dataset
sizes resulting from increasingly distributed compute environments
(e.g., large-scale supercomputer simulations) make it progressively
impractical to require data locality for interactive visual analysis.
As a consequence, remote desktop software for high-performance
evaluation is widely used to check the progress online and obtain live
results of long-running simulations (e.g., [Ma and Camp 2000]), and

*e-mail:steffen.frey @visus.uni-stuttgart.de
Te-mail:filip.sadlo @iwr.uni-heidelberg.de
*e-mail:thomas.ertl @ visus.uni-stuttgart.de

has also been discussed in the context of mobile devices [Diepstraten
et al. 2004], and protection of proprietary data [Koller et al. 2004],
among others. Typically, the image generation and transfer parts
are controlled independently, e.g., by means of adaptive sampling
in image space [Levoy 1990; Bolin and Meyer 1995], and by the
quality of the lossy compression used for transfer (like for JPEG or
MPEG [Koller et al. 2004; Herzog et al. 2008]), respectively. Several
approaches targeted toward visualization have been proposed to fur-
ther individually reduce the time for transfer, e.g., Pajak et al. [2011]
discuss efficient compression and streaming, as well as heavy server
load, for instance, by means of level-of-detail techniques [Moreland
et al. 2008].

However, the time required each for visualization and transfer is
influenced by a variety of factors, including the hardware used for
rendering, the complexity of the dataset, the viewpoint, the network
connection of the visualization server to the client, etc. As a result,
the achieved latency varies hugely within and across different sce-
narios, and different parameter settings need to be chosen explicitly
to harmonize image generation and transfer, and yield the optimal
result with respect to user-defined constraints.

In this paper, we optimize the remote rendering process toward
achieving the best quality for each individual frame with the con-
straint of a fixed response latency to a user request. We directly
relate the losses stemming from undersampling and lossy compres-
sion to dynamically balance the time spent for visualization against
the time spent for transfer, and optimize the efficiency of the time
spent in each individual task. No dataset-specific preprocessing is
required, i.e., no additional delay is introduced for visualizing the
latest time steps from a running simulation. In brief, we contribute
an approach for remote visualization that shares concepts, criteria,
and computation steps for an integrated lossy frame compression
and adaptive volume raycasting (Sec. 2), that

« adaptively prioritizes regions for refinement with a novel pro-
gressive rendering scheme,

* dynamically chooses the quantization quality for compression
to meet latency restrictions,

 and determines the best time share for visualization and trans-
fer for each frame on-the-fly (Sec. 3).

* We employ regression analysis-based error prediction consid-
ering both undersampling and lossy compression for driving
the decision making (Sec. 4).

Control
Volume ~
Raycasting [
! v
Reordering &
- Color Transform Frequency . > - .
»e &DCT — Weighting Quantization - E?;t(;(;;‘)nyg T >
Standard only
Residual Standard Extended — e eeeneees > Extended only
esidual Component Component
Subtraction £ £ > e > Both

Data & Control Flow Data Flow

Figure 2: Standard and extended image-data streaming pipeline.

2 Remote Visualization Server Architecture

Fig. 2 shows a standard video encoding pipeline (in orange) with
our modifications (in blue). In a standard video encoding pipeline,
one starts with Image Data that needs to be transferred, and typically
some kind of frame prediction is subtracted from the provided image
to improve compression efficiency later on (Residual Subtraction).
In our remote visualization setup, this image is generated and re-
fined iteratively during the whole process. We do this on the basis
of a frame request from the client that typically includes the camera
configuration, but may also include adjustment to the transfer func-
tion, time step of the dataset, etc. In this work, we employ Volume
Raycasting with early ray termination, and a simple local lighting
model for which gradients are determined on the fly using central
differences. Here, the residual subtraction step is delayed to the
end of the pipeline as we require full frame information later on
(Residual Subtraction).

Subsequently, the RGB samples are transformed into YCbCr color
space and partitioned into blocks, with each block being translated
independently into its frequency representation using the discrete
cosine transform (Color Transform & DCT). Note that depending on
the state of refinement, Volume Raycasting produces sparse image-
based sampling, and we use an adjusted DCT transform that can
handle these adequately, following the description given by Bolin et
al. [1995] (resulting in as many frequency terms as there are samples
in a block). Weighted frequencies F are then generated from this
transformed representation using pre-defined matrices to account for
perceptional factors (we use the matrices from JPEG [1992]).

Before proceeding to the next step of the pipeline, our modified
approach goes into the Control component that is further divided
into three subcomponents. First, Sampling Control decides where
to sample the image with the goal to minimize the total error of a
frame with a certain number of samples (Sampling Rate). Second,
Compression Control adapts the quality parameter (Compression
Rate) such that the specified frame latency is met. Third, Interrupt
Control decides whether to continue the refinement of the frame (A)
or whether to stop sampling and transfer the frame to the client (B).
Sampling Control and Interrupt Control employ regression analysis
to estimate current and eventual future errors (Sec. 4), while Com-
pression Control estimates network bandwidth and image size after
compression to stay within user-defined latency restrictions (Sec. 3).

Next, these frequencies F are quantized to Fy by rounding from
floating point to the nearest integer (Quantization), considering the
Compression Rate a: Fy = Lg} . In our modified approach, adjusted
frequencies from the previously transferred frame are subtracted
from the result (Residual Subtraction). The quantized frequencies
are then reordered to improve locality and encoded by an entropy
encoder (Reordering & Entropy Encoding). The result is then trans-
ferred to the client, where the visualization image is finally decoded
and displayed. All computation steps of our pipeline are executed
on the GPU, with the exception of the CPU-based entropy encoding.

Algorithm 1 Control procedure from Fig. 2. est; denotes that
function is based on an estimation, with £ giving the result type.

1: procedure CONTROL

2 » Sampling Control

3 r = est, (Ar) > estimate number of rays for this iteration
4: S, = sampleGen, (r) > generate ray sampling tasks
5: » Compression Control

6: [6,67] «est (F,[t,t — (At +07)]) > estimate data sizes
7 [a,a”] «estq([g,67]) > quantization factor to yield [g,¢7]
8 » Interrupt Control

9: [6,,6:7] esto([or, 0], [0,S,])

> o estimation
10: if 0, <o, then © estimated next smaller than current error
11: continue with Branch A (Fig. 2)
12: else
13: continue with Branch B (Fig. 2)
3 Control

Control is the core component of our remote visualization approach.
It is divided into three phases with different objectives: Sampling
Control, Compression Control, and Interrupt Control (Alg. 1). First,
in Sampling Control, the upcoming sampling tasks are determined,
i.e., a list of sampling positions in image space and the sampling
density along the respective rays (Alg. 1, from Line 2). Before these
are generated, the number of rays (the so-called ray chunk size) is
estimated that yields a given render time of Ar (Line 3). This target
render time At is set to be a good tradeoff between high granularity
(small Ar) which enables higher accuracy for control, and low gran-
ularity (large At;) which decreases induced overhead and increases
GPU utilization. Then, as many sampling tasks are generated to
match this number, and located such that the respective rays improve
the image quality as much as possible (Line 4). The number and
location of samples required depends on the resolution level / of the
respective block (Fig. 3 and right quarter of the renderings in Fig. 1).
Blocks are selected for refinement to the next level according to their
sorting in terms of anticipated error o, (higher errors first).

Compression Control then estimates the quantization factor o (the
Compression Rate) to match the target frame time 7 when interrupt-
ing the refinement of the frame in this iteration (i.e., take exit B in
Fig. 2). Furthermore, to support Interrupt Control, the quantization
factor o™ is estimated that would allow to match 7 after the next
iteration. We first determine the respective data sizes ¢ and ¢
that would achieve the required time for transfer fansser for this
and the next iteration, respectively, based on bandwidth and latency
estimates (Line 6). With this, we then estimate the quantization fac-
tors o and @ that after compression yield ¢ and ¢, respectively
(Line 7). In our implementation, we do this by compressing a frame
with two different values for o in every third refinement iteration
(according to our experiments a good trade-off between overhead
computation time and accuracy), and inter-/extrapolate on this basis
to estimate the outcome for other values of c.

In Interrupt Control, we use the quantization factors &, o and the
information about the upcoming refinement S; to decide whether to
remain in iterative refinement (Branch A, i.e., continue rendering
and improving the frame this way), or to exit and send the frame
to the client (Branch B). For this, we estimate the errors ¢, and
o, that would result if leaving the refinement process in this or
in the next iteration, respectively (Line 9). Then, if the anticipated
deviation in the next frame o, is smaller than that of the current
frame o, (Line 10), we continue refinement with Volume Raycasting
(Branch A, Line 11). Otherwise, refinement of the frame is stopped
(Branch B, Line 13), and we continue with compressing it, sending
it to the client, and start working on the latest present frame request.

ﬁ.} .l P‘. > = A.“,\ ;:‘,1 Aray=
§|.: 00 g =1 |S]=0 |F|=4
3lel® 0 g e
S 000006 2 . .
Seeeeee0e & =4 |S|=48 |F|=64 Aray=1
£ oole ——
B =6 |S|=64 |F|=64 Aray=0.25
[([] 600000000 =7 |S|=64 |F|=64 Aray=0.125

Figure 3: Sampling patterns for resolution levels | in image and
ray space. Samples from adjacent blocks are used for | = 1,2, and 3
to reduce the required additional number of samples |S|. From [> 5,
all pixels are sampled with increasingly fine sampling along rays
(Aray). |F| gives the number of generated frequency components.

This approach follows a classic hill climbing scheme, and the char-
acteristic development of the respective values is shown in Fig. 1 for
one frame. It can be seen that the frame is interrupted after the curve
of o, intersects the one of o, (Iteration 17 in this case).

4 Estimation of Block Deviation

We approximate the quality of the (quantized and unquantized) fre-
quency representation of each block with the standard deviation 6,/
of the frequencies of the current level / to their reference, i.e., to
the unquantized frequencies of this block at the highest resolution
level lmax (I =7 in our implementation). To generate an estimate
o, of 6, that can be used on-the-fly, we collect data of previously
rendered frames of representative datasets and views that were fully
refined to the highest level /yax. From this, we generate a function
to predict 6, from the determined values for o; and o;_; using
regression analysis (07 depicts the standard deviation between the
frequency representation of the current level / and the previous level
[— 1, while 0;_ stands for the one between / — 1 and [/ — 2). In our
experiments, we found that considering both o; and o;_; allows for
more accurate estimates (as indicated by the colored point data in
the scatterplots in Fig. 4). For fitting, we use a degree-three poly-
nomial with two indeterminates (o; and o;_) and perform linear
ridge regression (also known as Tikhonov regularization). In detail,
we utilize a pseudo-Vandermonde matrix, that is composed of 7 + 1
measurements of o; and o;_;. For Sampling Control, we fit the
unquantized version of both the current and the upcoming block
resolution level (o, and ;7). For Interrupt Control, we generate fits
for a total of 16 different quantization levels 6,4: 0g,..., 05, with
oy = 0.02 and a5 = 10, and the other values distributed evenly in
between (i.e., between 5 and 99 in terms of JPEG’s quality defini-
tion [JPEG 1992]). A selection of fitting results is depicted in Fig. 4.
For generating an estimate with an arbitrary o, with o < & < Q4 1,
we perform linear interpolation between oy, and . to reach the
final result. We do this, as according to our observations, the tran-
sitions between the levels is smooth, and it allows us to reduce the
complexity involved in the fitting and the evaluation process.

5 Results

We conducted a comprehensive evaluation covering different system
setups, methodical variants and five different datasets: Chameleon
(10242 % 1080), Mouse (10242 x 975), Supernova (4323), Lambda
(529%), and Rayleigh-Taylor (1282 x 256) (Fig. 5). For each dataset,
we created a short camera path that represents standard user interac-
tion sessions. Two full-reference metrics are used for image quality
estimation: multi-scale structural similarity (MSSSIM, value range
[0,1], larger is better) [Wang et al. 2003] and peak signal-to-noise
ratio (PSNR, value range [0,), larger is better). They are particu-
larly suited for comparison of frames belonging to the same setup,
but absolute values have to be used with caution across different

— 0,.,=00
0,1 =05
0, =1.0

o, =15

O'B 0 0.5 1.0 15 20 0'8.0 0.5 1.0 1.5 2.0 0'8 0 0.5 1.0 15 20

a1 9 g
@ l=10m (b) I=2,08 (c) [=3,08

Figure 4: Each point in the scatterplots represents the data of
one block. Its position depicts the relation between o; and oy, and
the color of a point indicates the value of 0;_| (blue means low
value, red stands for large value). The lines show our 3D surface fit
(through oy, 0;_1, and o, or G,) for specific values of 6;_1.

configurations (e.g., [Huynh-Thu and Ghanbari 2008]). Since a
reference image is required for both metrics, we run our visual-
ization procedure twice for each configuration (one online run in
real time, and one offline run to generate the respective full-quality
images). Throughout our evaluation, we used an image resolution of
1024 x 600. On the GPU of our server machine (NVIDIA GeForce
GTX Titan, Intel Core i7 X980), generating sampling tasks took
around 0.18 ms, the transformation of samples to the frequency
domain 0.11 ms, and the quantization, residual subtraction, and re-
ordering of frequencies to prepare them for compression took around
0.4 ms. Downloading the result to the CPU took 0.7 ms. The com-
pression of a frame using LZ4 on the CPU required approximately
5ms. On the client (NVIDIA GTX680, Intel Core 17-3820), LZ4
decompression took 2.5 ms, and the reconstruction of a frame for
display took around 1 ms. Note that values may vary depending on
various factors (e.g., block resolution levels). We target a total frame
latency of 0.15 ms throughout our evaluation.

Sampling Control. We evaluated different criteria for selecting
blocks for refinement: (o) (our prediction), s(o;) (error to the pre-
vious level), s(0;_1 — 07) (gradient of error development, cf. [Bolin
and Meyer 1995]), and s(f —1) (blocks of the same level have the
same value). Here, quality loss due to lossy quantization is not con-
sidered. Tab. 5a shows that s(0,) produces the best results, although
followed closely by s(0;), with s({ —I) performing the worst. Note
that s(0oy) is relatively close to s(o;) for low resolution levels I, with
the difference becoming larger the higher the sampling density gets
(cf. Fig. 4). Generally, the more time is available for rendering, the
better s(o;) performs in comparison to the other modalities, as the
variance in the predictions decreases. Further, for datasets with high
visual complexity (e.g., the Chameleon), good decisions on where
to refine have a strong impact, while particularly for the smoother
Rayleigh-Taylor, but also the Supernova dataset, the difference is
much smaller. In Fig. 6a, s({ —I) leads to blurry results over wide
regions of the dataset, these regions are much more detailed in (b)
as well as closer to the reference in (c).

Compression Control. In the following, the bandwidth is restricted
to different values to simulate different remote visualization setups:
2, 16, and 64 MB/s. Our approach flexibly adapts compression
quality to systems with different performance characteristics, and in
terms of quality values PSNR and MSSSIM performs better than the
tuned fixed-quality settings (Tab. 5b). The fixed settings (10, 50, 90)
are relatively close in value to what our adaptive approach achieves
for low, medium, and high bandwidth settings, respectively (for 2
MB/s, high fixed-quality settings often significantly exceed the tar-
get latency time). Nevertheless, our quality results are significantly
better even if the fixed quality suits, as we adapt each frame indi-
vidually based on its content. Fig. 6 further shows that our adaptive
compression (e) introduces the flexibility to find a good trade-off
between sampling and compression, with more visible details than

[(a) ing Control [(b) Compression Control

Il

(<) Interrupt Control

|) (=

Setting _ Time (s)|[MSSSIM PSNR oy _ Render Transfer|["Setting Bw.[MSSSIM PSNR o, Render Transfer|[Setting Bw.|MSSSIM PSNR o Render Transfer, bd
s(or) 0.04 | 0907 28.884 0448 0.044 0.0 10 2 | 0897 29.03 0.436 0.09 0053 |[or <o, 2 [0919 304950359 0.083 0.092 %
s(oy) 0.04 | 0907 28.868 0448 0.044 0.0 20 2| 0.898 29.148 0.422 0.076 0.076 |[0.50r <077 2 | 0929 31.038 0.445 0.118 0.08 2
s(op_y—op) 004 | 0905 28763 0471 0.045 0.0 90 2 | 0878 282290532 0.031 0.144 || 20 <77 2 | 0.857 27.5810.597 0.024 0.149 2 -
s(i—1) 0.04 | 0.897 28346 10801 0.044 0.0 [la.(257) 2 | 0914 3049 0.338 0.082 0084 || <057 2 | 0921 303830347 0.082 0.079 Chameleon Supernova Rayleigh-Taylor
s(or) 0.08 | 0919 29467 0.342 0.083 0.0 10 16| 0916 30021 045 0.143 0008 || or <o’ 16| 0943 321520228 0.131 0.023 - e — -
s(op) 0.08 | 0917 29297 035 0083 00 20 16| 0928 30.86 0333 0.137 0011 ||0.50r <o;” 16| 0.944 32364 0348 0.146 0014 % o 7 /’@‘ \
s(oj_1—o;) 008 | 0915 29.051 04 0084 0.0 90 16| 0919 30.196 0319 0.117 0036 || 26r <oy 16| 0921 3031 0304 0.085 0.054) ’
s(i—1) 008 | 0918 28.88 16325 0.084 0.0 [a (584) 16| 0942 32.097 0228 0.132 0023 || r<057 16| 0925 30.487 0.293 0.087 0.052 b i \
s(or) 0.2 | 0941 3174 0248 0.124 0.0 10 64| 0917 30.113 0455 0.147 0003 || or<o,° 64| 0947 3264 02 0.142 0013 j Jh]ﬁ ™
s(oy) 0.2 | 0935 31147 027 0124 00 20 64| 0931 310870334 0.145 0.004 ||0.50r <oy 64| 0.944 32444 0343 0.153 0.006 0 =
s(oj_y—op) 012 | 0929 30.19 0359 0.125 0.0 90 64| 0926 30744 0289 0.137 0014 || 20r <077 64| 0939 32108 0224 0.126 0.021
.v(f—l) 0.12 0.932 29.759 15.521 0.126 0.0 a.(81.6) 64| 0.947 32.621 0.199 0.142 0.013 t <0.57 64 | 0925 30.505 0.292 0.087 0.02 Lambda Mouse

Figure 5: Averaged results over different datasets. Closeups for selected regions (black rectangle) are shown for lambda and mouse in Fig. 6.

with fixed low (d) or high (f) compression quality.

Interrupt Control. Our standard o, < o, is compared against
0.50, < 0,7, and 20, < 0,7, as well as against a fixed predefined
time share for rendering and transfer ¢ < 0.5¢ (spending half of the
specified frame latency for rendering, and the other half for transfer).
Regarding o, < 0,", 0.50, < 0,7, and 20, < 0, ", the impact of
using a scheme with a modified criterion can already be estimated
from Fig. 1 (right): 0.50, < o, typically leaves refinement too early
according to our predictions, while 0.50, < o, interrupts too late.
The fixed variant ¢ < 0.57 is not able to adapt to the visualization
process. Overall, 6, < 6, delivers the best results, considering both
quality as well as compliance with the total computation time limit
(Tab. 5c). For the lowest bandwidth, variants forcing a relatively high
ratio of render time significantly exceed the target latency in this case
(0.50, < 0,7), as a small enough transfer size cannot be achieved
anymore. For the low bandwidth setting, o, < 0,7,0.50, < 0,
and 20, < 0, also sometimes exceed the total limit of 0.15 ms,
which we attribute to inaccuracies in our bandwidth estimation, as
the variation can be large particularly for low iterations counts.

6 Conclusion and Future Work

We presented a novel approach for handling sampling and compres-
sion in remote visualization in an integrative fashion, and showed its
utility for a range of datasets and bandwidth settings. It adaptively
prioritizes regions for refinement with a novel progressive rendering
scheme (Sampling Control), dynamically chooses the quantization
quality for compression to meet latency restrictions (Compression
Control), and determines the best time share for visualization and
transfer for each frame on-the-fly (Interrupt Control). We employ
regression analysis-based error prediction considering both under-
sampling and lossy compression for driving the decision-making.

For future work, Interrupt Control could be combined with previous
work [Frey et al. 2014] in which we adjusted the time a frame may
take (in contrast to the fixed latency setting in this paper) to balance
the errors in local rendering due to undersampling and temporal
changes. Conducting a user study on top of our quality metric-
based evaluation could further lead to additional insights. Also,
currently, our prototype implementation uses a JPEG-based com-
pression scheme for the sake of simplicity, which could be changed
into a video codec-based streaming for direct performance compari-
son to state-of-the art remote visualization applications. We further
anticipate that we might be able to use hardware video functionality
(as introduced by Intel, AMD, and NVIDIA [2014]) in case their
flexibility further increases (supplying the intermediate frequency
representation, in particular). Finally, our error estimation per block
could be used for adaptive compression in image space.

Acknowledgements

The authors thank the German Research Foundation (DFG) for
financial support within project A02 of SFB/Transregio 161.

[Ay |
1 i I 1 i
(@ s(I—1 (d) ¢=10 () adapr. (f) g=90 () ref.

Figure 6: Closeups of Lambda (a)—(c) and Mouse (d)—(g) (Fig. 5).

References

BOLIN, M. R., AND MEYER, G. W. 1995. A frequency based ray
tracer. In 22nd annual conference on Computer graphics and
interactive techniques, ACM, SIGGRAPH, 409-418.

DIEPSTRATEN, J., GORKE, M., AND ERTL, T. 2004. Remote
line rendering for mobile devices. In Proc. Computer Graphics
International, 454-461.

FREY, S., SADLO, F., MA, K.-L., AND ERTL, T. 2014. Interactive
progressive visualization with space-time error control. /EEE

Transactions on Visualization and Computer Graphics 20, 12,
2397-2406.

HERZOG, R., KINUWAKI, S., MYSZKOWSKI, K., AND SEIDEL,
H.-P. 2008. Render2MPEG: a perception-based framework
towards integrating rendering and video compression. Computer
Graphics Forum 27(2), 183-192.

HUYNH-THU, Q., AND GHANBARI, M. 2008. Scope of validity of
PSNR in image/video quality assessment. Electronics Letters 44,
13, 800-801.

JPEG, 1992. ISO/IEC IS 10918-1, ITU-T Recommendation T.81.

KOLLER, D., TURITZIN, M., LEVOY, M., TARINI, M., CROCCIA,
G., CIGNONI, P., AND SCOPIGNO, R. 2004. Protected inter-
active 3D graphics via remote rendering. ACM, SIGGRAPH,
695-703.

LEvVOY, M. 1990. Volume rendering by adaptive refinement. The
Visual Computer 6, 1, 2-7.

Ma, K.-L., AND CAMP, D. M. 2000. High performance visualiza-
tion of time-varying volume data over a wide-area network. In
ACM/IEEE conference on Supercomputing.

MORELAND, K., LEPAGE, D., KOLLER, D., AND HUMPHREYS,
G. 2008. Remote rendering for ultrascale data. Journal of
Physics: Conference Series 125, 1, 012096.

NVIDIA, 2014. Nvidia video encoder. developer.nvidia.com.

PAJAK, D., HERZOG, R., EISEMANN, E., MYSZKOWSKI, K., AND
SEIDEL, H.-P. 2011. Scalable remote rendering with depth and
motion-flow augmented streaming. Computer Graphics Forum
30,2,415-424.

WANG, Z., SIMONCELLI, E., AND BOVIK, A. 2003. Multiscale
structural similarity for image quality assessment. In Proc. Sig-
nals, Systems and Computers, vol. 2, 1398—-1402.

