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Abstract. We propose a novel technique for the automatic, similarity-
based selection of representative surfaces. While our technique can be
applied to any set of manifolds, we particularly focus on isosurfaces from
volume data. We select representatives from sets of surfaces stemming from
varying isovalues or time-dependent data. For selection, our approach
interpolates between surfaces using a minimum cost flow solver, and
determines whether the interpolate adequately represents the actual
surface in-between. For this, we employ the Hausdorff distance as an
intuitive measure of the similarity of two components. In contrast to
popular contour tree-based approaches which are limited to changes
in topology, our approach also accounts for geometric deviations. For
interactive visualization, we employ a combination of surface renderings
and a graph view that depicts the selected surfaces and their relation.
We finally demonstrate the applicability and utility of our approach by
means of several data sets from different areas.

1 Introduction

The visual analysis of surfaces is an important task in many different domains,
including a variety of medical applications and engineering. While the approach
presented in this paper can deal with arbitrary surface representations, in the fol-
lowing, we mainly focus our discussion on isosurfaces generated from volume data.
This data can be obtained through measurements via scanners (e.g. medical CTs,
but also material testing for industrial applications), or simulations. Additionally,
data may be static or time-dependent. While three dimensional scalar fields
represent a common data type in scientific visualization, the complexity of these
data sets increases steadily with their size. A default tool used to examine them
is the generation of isosurfaces for a given threshold value. However, selecting
threshold values showing the interesting features of the data set is aggravated
by several problems. With the infinite possibilities of thresholds to choose from,
manually identifying the more interesting isosurfaces can be very tedious.

In the following, we discuss our approach to determine characteristic iso-
surfaces based on transportation-based interpolation. We review related work
in Sec. 2, and give on overview on our approach in Sec. 3. In particular, we
contribute the following:
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– our approach to determine interpolated surfaces and their similarity w.r.t. a
reference (Sec. 4)

– the matching of similar surfaces across time or isolevels (Sec. 5)

– determining characteristic surfaces on the basis of the similarity between
interpolate and reference (Sec. 6)

We evaluate our approach, and discuss its merits and limitations in Sec. 7. We
finally conclude our work in Sec. 8.

2 Related Work

Isosurface Extraction and Rendering. For uniform grids based on trilinear
interpolation, classical Marching Cubes (MC) [1] and variants are the most
popular to explicitly extract isosurfaces, and are used as a basis for isosurfaces
in this paper. Other approaches use Voronoi diagrams [2], advancing front tech-
niques [3], and meshing from point clouds [4]. An overview on quad meshing
techniques is given by Bommes et al. [5]. Theisel [6] represents the contours of a
piecewise trilinear scalar field as trimmed surfaces of triangular rational cubic
Bézier patches. For isosurface extraction from higher-order data, quad mesh
generation techniques [7], contouring [8], and approximate isocontouring [9] have
been proposed. Approaches for rendering implicit surfaces include BlobTrees [10]
and raytracing with both interval and affine arithmetic [11].

Isosurface selection. A prominent approach for selecting characteristic repre-
sentatives is the contour tree, which can be used to track the evolution of the
topology of isosurfaces. A good overview of methods generating the graph is
given by Biasotti et al. [12], and many improvements have been made towards
efficiently employing the contour tree in arbitrary dimensions, e.g. Carr et al.[13].
Another approach is collecting statistical information on the scalar field [14][15],
and selecting thresholds based on these results.

Isosurface similarity and morphing. Several methods for comparing surfaces
for their similarity and consequentially morphing them have been proposed. With
the Hausdorff distance being very intuitive and generally applicable, and in
addition fast to compute [16], it is a choice similarity metric for two comparing
two surfaces. The method in Bruckner et al. [17] enables automatic selection of
isosurfaces based on an entropy similarity metric. It is noteworthy to mention,
that while [17] generally takes a similar approach, our method differs as we do
not necessarily require an underlying continuous representation as a scalar field.
Unlike their entropy-based similarity metric (which requires an continuously
defined/interpolated data set), our approach, based solely on the Hausdorff
distance metric, works on arbitrary point cloud sets, including ones derived e.g.
from analytically defined and higher order surfaces. The goal of the technique
proposed by Wei et al. in [18] is to verify that a set of isosurfaces are sufficient
to represent the entire scalar field. This is complementary to our technique, and
may be used to set up the input set to our method.
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3 Overview

In this work, we propose a novel technique for the automatic, similarity-based
selection of representative surfaces, chosen from a set of surfaces constructed by
varying a generating parameter like threshold value or time. Note that this ’base’
set is acquired from a different source, e.g. using an isovalue threshold sweep, or
employing complementary algorithms as mentioned in Sec. 2. We rely on two
different similarity metrics in this work (Sec. 4): (1) the Hausdorff distance for
fast computation, and (2) the scalable Minimum Cost Flow (MCF) Distance,
which in addition to similarity also yields an surface interpolation scheme, used in
the refinement step later on. First, our approach uses a low-accuracy, high-speed
variant of the MCF Distance to do a comparison between connected components
for consecutive thresholds. This establishes a set of so-called paths approximating
the evolution of individual components similar to a contour tree (Sec. 5). In
the refinement step, a component’s change along a path is examined, by first
calculating a linear interpolation between the first and the last component of a
path using the MCF Interpolation. All components of the path are then compared
to their appropriately evaluated interpolate using the fast and accurate Hausdorff
distance. Provided the similarity distance exceeds a user-defined threshold, the
path is subdivided at the deviating (and therefore representative) surface, and
the sub-paths are retested.

4 Distances and Interpolation Between Isosurfaces

To decide if two arbitrary surfaces are similar, several metrics with different
properties can be employed. In our approach we use two different schemes,
Hausdorff distance and Minimum Cost Flow (MCF) Distance. We also employ
a point cloud interpolation, which maps samples of a surface to samples of a
different surface, invoking a MCF solver. In this section, we give a short overview
of employed metrics and how the MCF Distance calculation yields an interpolation
for two point clouds.
Hausdorff Distance. As mentioned earlier, we calculate the Hausdorff distance
between surfaces, which is the supremum of the pairwise shortest distance from
all points of one surface compared to the other. The mathematical definition also
works on arbitrary point sets. One can easily see that taking a subset of points
from the surfaces and calculating the Hausdorff distance for these will yield a
good approximation for the surfaces themselves, while a uniform sampling with
density based on largest surface area ensures a reasonable accuracy. Another
important trait of the Hausdorff distance is that no further information is required,
rendering it applicable for arbitrary geometry.
Minimum Cost Flow Distance. In this paragraph, we first explain the MCF
problem, and then how it maps to a similarity function. Given two sets of nodes,
sources and targets, weighted edges between sources and targets are established.
A quantity Q is defined on all nodes, while the sources get positive values, the
targets gets negative ones. The sum of Q over both the source and target set must
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be exactly zero. The problem is now to move the quantity along the given edges,
so that each node has zero quantity after the procedure. Depending on the edges
available, this problem can be usually be solved in numerous ways. An additional
condition can be imposed by requiring the so-called cost C to be minimal. C can
be calculated by multiplying the weight of an edge with the amount of quantity
moved across this edge, and summing this up for all edges participating in the
solution. This severely reduces the number of possible solutions, very often the
global minimum of C is unique.

The solution and it’s cost C of a MCF problem can be mapped to a distance
function between two point sets A and B using the following rules:

– Without limiting the generality of the mapping we declare the points in A to
be the sources, and the points in B to be the targets.

– By connecting a point from A with a point from B we define an edge, and
set its weight (i.e. cost) to the Euclidean distance between the points. This
is done for all possible pairings.

– Each source node gets the quantity 1, each target receives -1.
– To fulfill the prerequisite of having a sum of exactly zero, the necessary

amount of quantity (either positive or negative) gets distributed randomly to
the set with less nodes (points).

Unlike the Hausdorff distance, the MCF distance additionally yields a direct
point to point assignment, which is also useful for interpolation.
Minimum Cost Flow Interpolation: Executing the MCF algorithm will
yield an assignment for each point of the set containing fewer points, to one or
more points of the set containing more points. Per definition, all edges will be
transporting exactly none or one unit (since both sets initially receive only 1
unit, either negative or positive). The assignments defined are simply the edges
transporting a unit of the quantity. The Hausdorff distance definition may be
used in a similar way, by assigning each point its closest neighbor of the other set.
This will however introduce a heavy bias for certain points, e.g. the protruding
peaks of a surface, since there is no limit on how many points are allowed to be
mapped, which is avoided by the MCF solution.

5 Determining Component Evolution

As a preliminary similarity association, a coarse pre-matching is applied to
connected components of consecutive isolevels, with the goal of associating a
component cs ∈ Cs for an isolevel ρi to it’s most similar candidate ct ∈ Ct for
ρi+1. Performing this for all components at all isolevels will yield something
similar to a contour tree, but based solely on point geometry (as opposed to
topology). The matching of components for consecutive isolevels is done by
executing the following two steps.
Determine Component Similarity: The first step is performed by comparing
the connected components with each other. For each component cs, s ∈ 1 . . . n
and ct, t ∈ 1 . . .m, where n,m denotes the number of components in ρi, ρi+1
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respectively, the surface is sampled uniformly (with respect to the surface area),
but fairly coarse. All resulting point clouds of Cs are compared pairwise to all
point clouds associated with Ct, and the MCF distance metric (as explained in
subsection 4) is applied, with the calculated distance d resembling a (coarse)
measure for their similarity.
Find Best Association: If the connected components are interpreted as nodes
of a graph G, the pairs (cs, ct) can be interpreted as directed edges, with d being
an associated edge value, and the direction being defined by increasing ρ. The
first k edges, ordered by similarity d, are then added to the graph G, where
k = max(n,m), while any edges containing a node already part of an edge in G
are skipped. This leaves at the most one associating edge for each component in
ρi and ρi+1. This is repeated for all isolevels ρmin < ρi < ρmax, and the graph
G is defined containing all connected components of all isolevels as nodes, and
edges connecting each node to their most similar component at the previous and
next isolevel. The sub-graphs defined by a set of nodes which are connected by a
series of edges will be called path P . Components which have exactly one edge, or
none (i.e. the first and the last component cf , cl of a path), can be considered as
candidates for representative surfaces. The resulting graph has some similarities
to a contour tree, but additionally also has a few advantages. It already gives an
impression of the similarity (determined as d) between components on a path P ,
which, in a contour tree, would simply be represented on a single edge. The above
procedure will already yield representative surfaces similar to a contour tree.
Even though this step will cover all correct matches for components, it might
produce false positives. This can happen since the algorithm always picks a best
match, even if there aren’t any “true” matches left. In addition, a slight change
of geometry on each increase of ρi can easily accumulate to a significant change
of geometry from the first to the last node of a path. Hence a more accurate
scheme is needed to augment this fast but coarse pre-selection.

6 Refining Selection of Characteristic Isosurfaces

Even though the information gathered in the first step described in section 5
already yields a significant set of representative surfaces (by choosing the first and
last components of established paths), potentially interesting candidates could be
missed within a path, and false connections might still be in there. Since the first
and last nodes of a path P are already marked as representative components, the
intermediate nodes now need to be examined. To find other potential candidates
co ∈ P , which differ significantly from both the first or last component, a linear
interpolation scheme is executed and Hausdorff similarity metric applied. The
following scheme is iterated on each path P to find further candidates.
Determine Similarity by Interpolation: More specifically, to determine if an
original surface co shows enough similarity to both the first and last component
cf and cl in a path P , a linear interpolation is performed between point clouds
derived from cf and cl as explained in 4. The employed point clouds are again
uniformly distributed samples, but unlike in Sec. 5, the resampling here is fairly
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Fig. 1: Screen capture of the interactive graph tool. The main view shows the
graph in detail with the nodes showing renders of the appropriate component.
The top right view shows a detailed render of a selected node, while the lower
shows statistical of a node or path. The overview window to the middle right
assists in navigating the graph.

dense (with respect to surface areas of cf and cl), to ensure a reasonably accurate
interpolation between the point clouds of the components.
The linear interpolation ci is then evaluated at an interpolation parameter t
based on the square root a of the surface areas of cf , cl and co using t =
(ao − af )/(al − af ). This ensures that, if a surface changes exactly linear, it will
also be perfectly interpolated by ci.
Conversely, the Hausdorff distance doi between original component co and inter-
polated component ci is a measure for geometrical deviations from cl, cf , which
might change the visual appearance of the component significantly.

Subdivide Paths: If any of the comparisons doi for the interpolated component
ci to the corresponding original component co yields a difference greater than
a user-defined threshold ε, the deviation is considered significant, and the path
needs to be subdivided. To reach a meaningful subdivision, the tested sub-path
is increased incrementally. This means, a sub-path starting at the first cf ′ = cf
and ending two nodes along the path, at cl′ = cf+2, is defined. If all nodes ci
between cf ′ and cl′ fulfill the interpolation similarity as defined above, a node is
added to the sub-path, l′ = l′ + 1, and the entire sub-path is retested. If the test
fails at any given intermediate node ci, the path is subdivided at the current l′.
The procedure is reiterated and sub-path now starts on the first unsuccessfully
added node, setting cf ′ = cl′ , and cl′ = cl′+2. The algorithm completes when
l′ ≥ l, i.e. the current sub-path’s end surpasses path P ’s end. The nodes cf ′ , cl′ of
each sub-path are added to the characteristic set S. Note that per construction,
all nodes on the sub-paths can be approximated by linear interpolation from the
characteristic nodes (within the error of ε).
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(a) Distorted Sphere (b) Gauss Blob (c) Rayleigh-Taylor (d) Bucky Ball

(e) 5jets ts100 (f) 5jets ts160 (g) 5jets ts230 (h) 5jets ts300

Fig. 2: Images giving an impression for the input data sets. a) A radially increasing
scalar field, with an added distortion in x direction. b) Three gauss functions
of varying intensity summed up to produce the scalar field. c) Time step 14
of the Rayleigh-Taylor data set. d) The C60 molecule in a scalar data field
representation. e)-h) A fixed threshold generates surfaces for various time steps
of the 5jets data set.

7 Results

To demonstrate the usability of the approach, we applied the technique to several
data sets. Data set size range from 643 to 128 × 128 × 256. An impression of
the input data sets is given in Fig. 2. The renderings are clipped to better
see the contours for a subset of the isosurfaces. In all data sets for which the
threshold value is varied, it ranges from minimum to maximum scalar value of the
corresponding data set (except for Bucky Ball, see below), on 30− 32 intervals.
For the 5jets data set, every tenth time step was used from time step 100 to
300. All calculations were performed on a Intel(R) Core(TM) i7-2600K CPU
@ 3.40GHz.For each data set, we give a render of the complete set of selected
isosurface components (Fig. 4), clipped to better show the results. Below the
renderings of all data sets the graph G is drawn, showing components as square
nodes, sorted by isovalue from left to right, and longer paths closer to the center
on the vertical axis. Components selected by the algorithm are highlighted in
red. Edges show the preliminary paths established.The graph is also interactive,
and may be used to acquire additional information about components and paths,
as seen in Fig. 1. For this, paths can be selected, and while selected nodes are
highlighted with a blue outline, associated data is displayed on the right. A detail
view of the component is shown for the selected node. The graph visualization
implemented is only a simple tool to verify the most important results (see Future
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(a) Cont. tree (b) ε = 0.5 (c) ε = 1.0 (d) ε = 2.0 (e) ε = 4.0

Fig. 3: Our algorithm applied to the Distorted Sphere data set for varying distance
thresholds ε, in units of cell size, with a) showing the contour tree result for
comparison. As seen for the second inner sphere in b), a small ε reacts earlier
to the change from spherical to elliptical compared to c). As ε increases, less
surfaces get selected. The salient surface in the middle range always gets selected.

Work, Section 8), and can easily be improved to query data from the input set.
Distorted Sphere: This data set, shown in Fig. 3, is the first synthetic data
set, and serves to give an impression of how the user-defined Hausdorff distance
error ε affects the selection of isosurfaces. As is to be expected, fewer isolevels
are selected for increasing ε. Obviously the technique selects more isosurfaces
characteristic to the data set than the contour tree, which would simply be two
nodes for maximum/minimum isovalue, missing the salient surface in between.
Gauss Blob:Fig. 4a shows the second synthetic data set. This data set highlights
how the algorithm handles changes in the contour tree. As can be easily be
discerned from the graph, the first step creates the “contour tree”, encoded in the
node connections. Even though the algorithm does not show the actual merging
(like a contour tree would), it successfully determines all involved components
as characteristic, as well as selecting a few additional isovalues, since they differ
enough from the surfaces associated with topology changes.
Rayleigh-Taylor: To get a clear view of the results obtained for the Rayleigh-
Taylor instability, the surfaces have been rendered opaque, and a clipping plane
was introduced. Comparing Fig. 4c) with the input (see Fig. 2c)) one can see that
many cluttering surfaces have been removed. However, the most distinct features
are still visible, as well a few supporting isolevels selected by our algorithm. The
corresponding graph can be used to further investigate the selected surfaces.
5jets: Being a time series of isosurfaces, intersecting surfaces may occur, which
however get handled by the algorithm directly. Since the myriad of surfaces would
severely hinder exploration due to occlusion, we have picked a component (i.e.
an edge in the contour tree) in the interactive graph and show its evolution over
several isolevels (Fig. 4d), in terms of the surfaces selected by our algorithm.
The corresponding path is shown on the graph below.
Bucky Ball: For this dataset, a sub-range of thresholds was chosen as input,
where the main feature of the data set disintegrates into smaller components. As
can be seen in Fig. 4b, the boundary regions form a path dominating the graph.
The splitting of the main feature components, as well as the evolution of the sub
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(a) Gauss Blob (b) Bucky Ball (c) Rayleigh-Taylor (d) 5jets

Fig. 4: Isosurfaces selected by our algorithm for the respective data sets, including
the generated graph. For the time series data in 4d), a contour tree edge is chosen
(blue path in graph) and the isosurfaces selected by the scheme are shown. The
Gauss example 4a) includes a contour tree (lower graph) for comparison.

components can be easily extracted from the graph. Note that most selections
are topology changes, correctly identified as characteristic surfaces.

8 Conclusion

We proposed a novel technique for automatically selecting a set of representative
surfaces according to a minimum cost flow-based similarity metric. While our
approach works for arbitrary sets of surfaces, we focussed on isosurfaces in the
context of this paper. Here, we changed either the threshold value for a fixed time,
or the time was varied for a fixed threshold. We demonstrated that our technique
enabled a detailed selection of representative isosurfaces, based on the changes
in geometry, as the isosurface threshold is varied. To achieve this, connected
components of isosurfaces with increasing threshold are matched using a similarity
measure derived from the cost of matching points of the surface with a minimum
cost flow algorithm. However, even though geometrical changes accumulate over
several steps, the individual distances cannot be simply added.We remedy this
by interpolating a component’s surface over a threshold range, employing the
minimum cost flow algorithm again to obtain the interpolation. Based on the
Hausdorff distance of the interpolated surface to the original, additional threshold
values are added to the representative set.
For future work, the currently employed simple sampling strategy can be easily
improved, to guarantee a good approximation of the surface by the point cloud.
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The selection scheme can be directly improved by entering other factors into
the similarity calculation besides Hausdorff distance, e.g. employing change of
curvature. Supplementing the graph tool with a query-based filtering of paths
and components selected by the algorithm, would further enhance the utility as
an interactive interface for exploration.
Acknowledgements: This work was primarily funded by Deutsche Forschungs-
gemeinschaft (DFG) under grant SPP 1648 (ExaScaleFSA).
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