
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

S4: Self-Supervised learning of Spatiotemporal Similarity
Gleb Tkachev, Steffen Frey, Thomas Ertl

Abstract—We introduce an ML-driven approach that enables interactive example-based queries for similar behavior in ensembles of
spatiotemporal scientific data. This addresses an important use case in the visual exploration of simulation and experimental data, where
data is often large, unlabeled and has no meaningful similarity measures available. We exploit the fact that nearby locations often exhibit
similar behavior and train a Siamese Neural Network in a self-supervised fashion, learning an expressive latent space for spatiotemporal
behavior. This space can be used to find similar behavior with just a few user-provided examples. We evaluate this approach on several
ensemble datasets and compare with multiple existing methods, showing both qualitative and quantitative results.

Index Terms—Spatiotemporal Data, Machine Learning, Ensemble Visualization, Visual Exploration

✦

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

1 INTRODUCTION

ADVANCES in simulation methods, compute hardware and
measurement technology lead to the generation of spatiotem-

poral data at an unprecedented rate. In many cases, scientists
collect data not from just a single run but from hundreds or even
thousands of different configurations. These so-called ensembles
are fundamental in studying the effects of varying input parameter
values, boundary conditions, materials, etc. (e.g., [1]). Visualization
is crucial in making sense of this data. And explorative analysis
plays a particularly important role, since there is often only limited
prior knowledge of the newly generated data.

In this paper, we focus on the task of identifying other
occurrences of an event or a process discovered somewhere in
the data. This task is fundamental for various visual analysis
scenarios, yet poses significant challenges when unknown events
or new types of data need to be investigated. In some cases, there
are domain-specific measures of similarity or indicators for specific
processes. However, these are not generally available, and the
development of such algorithms requires not only detailed domain
knowledge but also a lot of time. Therefore, generic techniques are
needed to support the interactive exploration, especially when new
types of data are involved. Standard metrics operating directly on
the raw data representation like the mean squared error (MSE)
or the earth mover’s distance (EMD) are generic, but do not
yield expressive results for most application contexts. Instead,
we use a deep learning model that is able to extract more abstract
features from the data, allowing it to yield more meaningful results.
Learning-based approaches have been shown to deliver great results
in the quantification of image similarity [2]. However, such models
are often pre-trained on real-world images and are not suitable for
scientific data. And training new models on more appropriate data
requires labels at some point in the process, which are typically
not available for simulation and experimental data.

In this work, we address this challenge and present a data-driven
approach to assess the similarity of regions in spatiotemporal sci-
entific data, supporting meaningful query-based visual exploration.
Instead of relying on labeled data, we exploit data continuity

• Gleb Tkachev and Thomas Ertl are with the University of Stuttgart
Email: {gleb.tkachev, thomas.ertl}@visus.uni-stuttgart.de

• Steffen Frey is with the University of Groningen
Email: s.d.frey@rug.nl

and assume that nearby locations often contain similar behavior.
Combining that with ideas from self-supervised and similarity
learning, we set up a task to train a neural network, which is then
used to produce an expressive similarity metric for the provided
data. With this metric, we enable search for similar behavior in
ensemble data, guided by user-constructed queries. Moreover, our
efficient implementation and a prototype user interface allow the
search to be performed interactively. In summary, we consider the
main contributions of this work as follows.

• We propose a self-supervised method of learning a similarity
metric for spatiotemporal regions in scientific data to support
expressive similarity queries.

• We explicitly enable user interaction by supporting multi-
example queries and providing an efficient implementation as
well as a prototype user interface for visual exploration.

• We evaluate our approach both qualitatively with a domain
expert and quantitatively by comparing to several baselines
on both simulation and experimental ensemble data.

2 RELATED WORK

Ensemble visualization and similarity measures. The analysis
of data ensembles is a challenging visualization task [3]. Potter et
al. [4] and Sanyal et al. [5] proposed some of the first approaches,
studying climate ensembles, while Waser et al. [6] demonstrated
a system for interactive steering of simulation ensembles. Sedl-
mair et al. [7] and Wang et al. [1] provided detailed surveys of the
techniques in the area.

In the context of ensemble visualization, a similarity mea-
sure often plays an important role, and so many approaches
have been proposed. Bruckner and Moeller [8] used squared
differences to explore the visual effects simulation space, Hum-
mel et al. [9] determined similarity between regions via joint
variance, Wei et al. [10] efficiently computed similarity between
local histograms and Kumpf et al. [11] tracked statistically-coherent
regions using optical flow. Jarema et al. [12] utilized Gaussian
Mixture Models to compute a similarity matrix for vector fields.
And Wang et al. [13] proposed a vector field similarity based on
a 3D SIFT implementation. Hao et al. [14] constructed octrees to
calculate shape similarities for particle data, while He et al. [15]
employed surface density estimates for distances between surfaces.
Fofonov et al. [16] developed an isosurface-based similarity for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

multi-fields. We also propose a similarity metric that can be used
for spatiotemporal ensemble data; however, we use a learning-based
approach that is domain-agnostic but capable of adapting to the
dataset. Furthermore, we focus on the search for similar behavior,
allowing the user to interactively influence the similarity score.

Video object detection. The problem of spatiotemporal simi-
larity is related to object detection in video, which is extensively
studied in computer vision [17], [18]. Nevertheless, scientific data
presents a unique set of challenges. Some detection approaches
target specific object categories such as people in the subfield
of person re-identification (e.g. [19], [20], [21]), while in our
domain-agnostic setting we cannot make similar assumptions.
Other, especially deep-learning-based techniques (e.g. [22], [23],
[24]), can detect a diverse but fixed set of objects, requiring at
least some supervised data. Finally, the computer vision techniques
detect spatial objects in video by exploiting frame coherence, while
we are interested in fundamentally temporal processes, thus treating
temporal and spatial dimensions equally.

Self-supervised learning. In the last years, self-supervised
learning has been gaining popularity, especially in computer vision.
Dosovitskiy et al. [25] used random image transformations to
generate surrogate image classes and learn a robust feature space.
Misra et al. [26] learned their representation by predicting if a
sequence of video frames was given in the correct order, while
Doersch et al. [27] predicted the relative position of two image
patches. Continuing the trend, many other self-supervised tasks
were proposed in the following years [28]. Our approach also uses
the idea of self-supervised learning, but instead of fine-tuning
the pretrained model on supervised data, we use the learned
representation directly to find similar behavior.

ML in scientific visualization. Machine learning has long been
considered to have great potential in visualization [29]. Originally,
it found most applications in the area of Visual Analytics (survey in
Endert et al. [30]). However, in recent years, several learning-based
approaches have been applied in scientific visualization. Some have
focused on efficiently representing and interpolating volume data.
For example, Zhou et al. [31] presented a CNN-based approach
to upscaling volume data, while Han and Wang [32] employed a
recurrent generative model to perform interpolation of temporal
volume data. Other works aim to learn the volume rendering
function. Berger et al. [33] developed a neural network to generate
and explore volume-rendered images. Similarly, Hong et al. [34]
utilized an adversarial framework to restyle and generate new
renderings from existing images. The method by He et al. [35]
is related to both groups, as they learn to generate volume
rendering images under interpolation of both visual and simulation
parameters. The above works focus primarily on the rendering
pipeline, while we aim to learn a feature space that supports
exploration and navigation of the data. Another use of adversarial
methods was presented by He et al. [36], performing comparison for
collections of ensembles that represent different simulation models.
Han et al. [37] have shown that autoencoders can be used to learn
a latent space for the analysis of streamlines and streamsurfaces.
Recently, Guo et al. [38] used LSTM autoencoders with attention
to embed and find similarities in sequential medical data. The
autoencoder objective is related to self-supervised learning and
thus to our method. However, we develop a new self-supervised
task suitable for similarity searches and focus on staying domain-
agnostic, handling varied ensembles of spatiotemporal volume
data. Another implicitly self-supervised approach was proposed by
Tkachev et al. [39], who used temporal prediction with CNNs to

detect irregular behavior as well as estimate ensemble similarity. We
propose a different method for self-supervised ensemble similarity,
which is more scalable and allows the user to control the similarity
score.

3 MOTIVATION AND DESIGN DECISIONS

Our goal is to support the interactive exploration of ensemble data
by developing a similarity metric for spatiotemporal regions. We are
particularly interested in a metric that is data- and domain-agnostic,
because this has the potential to effectively decouple visualization
techniques from the underlying domain-specific aspects. Such
a metric could be used in other visualization applications, e.g.,
to cluster regions, select representative examples or compute
projections. In this paper, we focus on searching for occurrences
of similar behavior. This is a common task in a large variety of
analysis scenarios, and it enables us to directly demonstrate the
properties of the learned metric.

We are using a deep learning model to construct our metric
because it allows us to make few domain-specific assumptions
while still adjusting to the dataset at hand. This ability to adapt to
the dataset is the crucial property that leads to a similarity metric
more meaningful than a basic distance like MSE (element-wise)
or EMD (distribution-based). Furthermore, deep learning models
have demonstrated their effectiveness in many related scenarios
and most recently also in the context of scientific visualization [32],
[33], [34], [35], [39].

Despite their effectiveness, there is a fundamental challenge:
the lack of supervised spatiotemporal data in the analysis of
simulations and experiments. Indeed, it would be cumbersome
and unrealistic for a domain scientist to meticulously label every
region of their dataset, which can have high resolution in space and
time, as well as numerous members in the case of ensemble data.
This would completely defeat the purpose of a domain-agnostic
visualization system. To overcome this problem, we propose to
use self-supervised learning [25], [26], [27], [28]. The motivation
for self-supervised learning comes from the fact that unlabeled
data is unusable by typical supervised models, and yet most of the
data is unlabeled. How can we utilize this large unlabeled data to
improve our models? The answer of self-supervised learning is
to define an artificial task (the pretext task) on unsupervised data
that does not require manual labels. For example, predicting if two
images are transformed versions of the same original image to learn
transformation-invariant features. We can then train a supervised
model on the pretext task and use it to help solve the target task,
typically by fine-tuning it on a much smaller labeled dataset [28].
However, we do not have any labeled data available. Instead, we
directly use the feature space (representation) learned by the model
and compute distances in that space as our similarity metric. To
make sure that these distances correspond to similarity, we use the
siamese architecture for our model.

Siamese networks [40], [41] are a method of learning similarity.
They consist of two identical sub-networks that are joined at the
output. Each sub-network takes an input (e.g., an image) and
encodes it into a feature space. Then, a distance is computed
between the pair of encodings to output their similarity. This setup
allows us to train the sub-network (which we call the encoder) and
also encourages a feature space with useful distances, since we
explicitly constrain the model to rely on distances when solving
the task. Typically, a siamese model is trained on a labeled dataset

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Patch Q1

Encoder

Encoding Q1

Patch Qk

Encoder

Encoding Qk

… ……

Patch T

Encoder

Encoding T

∙

∙

∙

… F
C

Q near T?

Fig. 1: Our model architecture. We encode the query (Q1, ..., Qk)
and the test (T) patches using a convolutional encoder. Then L1
distances from each encoded query patch to the encoded test patch
are computed. Finally, the average distance is used by the fully-
connected layers (FC) to predict if the query and the test patches
are located nearby.

of known similarities, but we do not have such data and instead
train the model on a self-supervised pretext task.

The choice of the pretext task is critical to the learned
representation and thus the final performance of our method. Most
importantly, we need a task that is as similar as possible to our
target task because similar tasks require similar information to be
encoded by the model. One should also consider the invariances
imposed by the task on the representation, as they will determine
what information gets preserved or discarded. With this in mind,
we designed our task to be a binary classification problem: “given
two spatiotemporal regions of the data, are they nearby in space
and time?”. More concretely, the model is provided with two
rectangular spatiotemporal patches (boxes) from the data and needs
to determine whether they originate from the same ensemble mem-
ber and within a certain spatiotemporal window from each other.
This task is closely related to detecting similar behavior because
nearby locations often contain similar behavior. Additionally, we
explicitly encourage temporal and translational invariance of our
representation, which helps detect similar processes that are not
perfectly aligned. Note that other formulations are possible, e.g.,
predicting the distance of patches in space/time (regression) or
using contrastive loss, but we prefer a classification formulation for
practical reasons. It is simple and produces an intuitive performance
metric – accuracy, which allows us to make sure that the model is
solving the pretext task during training. In contrast, raw MSE or
cross-entropy values would be more difficult to interpret.

The result of the self-supervised training of our siamese model
is the encoder that enables us to compute distances between
data patches in the learned feature space. Of course, one cannot
expect this distance to provide a perfect solution for the target
task of finding similar behavior, but we demonstrate below that
it is meaningful and is a significant improvement over distances
computed directly on the raw data (Sec. 6, Sec. 7 & Sec. 8).

We could apply our technique to any type of a spatiotemporal
dataset that is large enough for training, but we focus on ensemble
data because it allows us to most effectively demonstrate the utility
of our learned similarity. Ensemble datasets often contain many
distinct types of behavior but are typically too large to manually
search through. We will demonstrate that our approach can detect

these behavior types without any domain-specific assumptions.
More specifically, we describe and evaluate our approach with
2D+T ensemble data as it enables us to effectively present our
results, but we also show that our approach works with 3D+T
data (Sec. 7.3). As mentioned above, our similarity metric could be
useful in a large variety of visualization applications. To exemplify
one of these applications and better demonstrate the properties of
the learned metric, we use it to perform search for occurrences of
similar behavior. We developed a prototype system that enables
the user to do this search interactively to explore an ensemble
dataset (Sec. 5).

Our prototype’s main feature is the example-based search over
spatiotemporal patches, i.e., 2D+T rectangular subsets of the data.
The user can select a few patches containing behavior of interest,
and the system returns others containing similar behavior. The
similarity is determined using our metric, encoding the query
patches and measuring distances to other patches in the learned
feature space. While the prototype has only basic features, it
showcases our learned metric and its possible applications.

4 SIAMESE NETWORKS FOR SIMILARITY QUERIES

In this section we describe our siamese network (Sec. 4.1),
its training procedure (Sec. 4.2) and the resulting similarity
metric (Sec. 4.3).

4.1 Pretext task and model
The key component of our approach is the model that we train
on the pretext task. As indicated above in Sec. 3, the pretext task
is to predict whether two spatiotemporal patches originate from
nearby locations in space and time. As our model, we use a neural
network that follows the siamese architecture. A typical siamese
network takes two inputs (in our case, 2D+T patches), passes
them through an encoder and computes the distance between the
encodings. Crucially, both inputs use the same encoder, i.e., they
share weights. This ensures that the inputs are projected into the
same space in which distances will be computed.

In our search application, we will be computing distances to
several patches provided by the user, not just one. To improve the
performance in this regard, we add a modification to the siamese
model. Specifically, we replace one of the input patches with a
set of k patches, here called the query. During the training, these
patches are sampled from the same spatiotemporal neighborhood,
and the network’s task is to predict whether they also share the
neighborhood with the other input patch, called the test patch.

An illustration of the model architecture is presented in Fig. 1.
Each input patch (the query patches and the test patch) goes through
the encoder, which is a convolutional network. All invocations of
the encoder use the same shared weights. Next, we compute an
element-wise distance between each of the query patch encodings
and the test patch encoding. These distances are then averaged
(again, element-wise) and used as input for a fully-connected layer
that acts as a simple classifier predicting whether the inputs came
from the same neighborhood. We use element-wise L1-distance
following [42]. The element-wise aspect is particularly important
in our self-supervised case: if instead we would have a vector
distance producing just a scalar value, the pretext task will have
to be solved in the encoder already, which would specialize the
learned representation to the pretext task and make it less general.
Thus, we use the element-wise distance to let more information
pass through the distance operator, shifting the pretext task decision
towards the classifier.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Layer Units/Ch. Activation Kernel size Strides
Conv3D 64 ReLU (1, 3, 3) (1, 2, 2)
Conv3D 128 ReLU (1, 3, 3) (1, 1, 1)
Conv3D 128 ReLU (3, 3, 3) (2, 2, 2)
Conv3D 256 ReLU (1, 3, 3) (1, 2, 2)
Reshape

FC 256 ReLU
FC 256 Sigmoid

TABLE 1: The architecture of our convolutional encoder, top-to-
bottom. We use a sequence of strided convolutions followed up by
a few fully-connected layers to encode each input patch.

4.2 Model training
The model is trained on data sampled from an ensemble of
spatiotemporal volumes. Each data point consists of several patches:
the test patch and the set of k query patches. Half of the points
represent the positive class, i.e., query and test patches coming
from the same neighborhood, and half represent the opposite class.
In either case, we first determine the location of the test patch by
uniformly sampling a random ensemble member and then uniformly
sampling a spatiotemporal location within it. This makes sure that
ensemble members of different sizes are equally represented in the
training data. For points of the positive class, the query patches
come from the same member as the test patch, sampled uniformly
from a spatiotemporal neighborhood around the test patch. The
neighborhood is defined by the maximum spatial and temporal
offsets os,ot . This means that all query patches are at most os
cells and ot timesteps away from the test patch. For negative
points, we first randomly choose an anchor location that is not in
the neighborhood of the test patch. We then uniformly sample k
patches around the anchor location with maximum offsets os,ot ,
like the positive case but around a different location. Thus, the
query patches always represent similar behavior, which makes them
more suitable for distance averaging and improves our latent space.
When choosing the offset parameters, we generally try to make
offsets larger to make the pretext task more difficult while still
training to high accuracy (in appendix ?? we also show that the
method is robust to the choice of parameters).

After the data is collected, we train the model using standard
ML practices. We use 20% of the data as a hold-out validation set
to monitor the model’s generalization performance and perform
early stopping. Overall we observed that higher accuracy and lower
overfitting on the pretext task leads to better performance of the
derived similarity metric. Implementation details of the model and
its training follow in Sec. 5.

4.3 Similarity metric
Once the model is trained, we use the encoder to compute
patch similarity. With encoder fe and two spatiotemporal patches
p1, p2, our patch similarity metric d (technically, dissimilarity) is
determined by the L1-distance between the encoded patches:

d(p1, p2) = ∥ fe(p1)− fe(p2)∥1 . (1)

As described in Sec. 3, we demonstrate the utility of this
metric by performing interactive queries. To provide results for user
queries, we use our similarity metric to construct a ranking score.
A query Q consists of two sets of spatiotemporal patches: a set of
positive examples Q+ containing behavior the user is interested in;
and an optional set of negative examples Q− containing behavior
that the user would like to exclude. The negative examples can

help the user narrow down the query and filter out false-positive
results. We define the ranking score r of some patch p to be the
average similarity metric between the patch and the query, where
the sum of distances of negative patches is subtracted from the sum
of distances of positive patches:

r (Q+,Q−, p) =
1

∥Q+∥+∥Q−∥

(
∑

p+∈Q+

d(p, p+)− ∑
p−∈Q−

d(p, p−)

)
(2)

The ranking score is therefore low for patches that are similar
to the positive part of the query and dissimilar to the negative,
indicating a good match. The score is normalized to make the
values more comparable across queries of different sizes. Note that
during the model training we used only a single set of patches
but sampled both positive and negative examples to learn a good
similarity metric. This implicitly supports our ranking score that
has the positive and the negative parts.

5 IMPLEMENTATION & PROTOTYPE SYSTEM

Network implementation. The architecture of our convolutional
encoder is depicted in Tab. 1. Since the ensemble datasets in
this paper are all 2D+Time, we use 3D convolutional layers to
perform both spatial and temporal convolutions, taking an input
with dimensions batch, time,height,width,channels. For the 3D+T
implementation in Sec. 7.3 we replace all the 3D convolutional
layers (2D+T) of the encoder with 4D convolutions (3D+T),
using the same strides and sizes. The 4D convolution takes a
tensor with dimensions batch, time,depth,height,width,channels,
and is implemented as a series of 3D convolutions along the time
dimension. The output of the final fully-connected layer is used as
the encoding of the input. After applying the encoder to each patch,
we compute element-wise L1 distance between each query patch
and the test patches (see Fig. 1). The distances are then averaged
componentwise. Finally, the average distance vector is passed to
the classifier. The classifier is a single fully-connected layer with
one unit that has the sigmoid activation. During the training, we set
the number of query patches k = 2 for all our models. Increasing
the k further did not harm the final performance but also did not
seem to improve it, so we chose the lower value.

The process of sampling training data is described in Sec. 4.2.
For all datasets, we downsample spatially by the factor of two and
then sample 500,000 data points (50,000 for the non-ensemble
Isabel dataset), each consisting of k+ 1 input patches. We split
the points 50:50 between the positive and negative classes, but
other ratios could be explored. We also perform data augmentation:
patches are randomly mirrored along the spatial axes, and their
values are scaled with a random coefficient ∈ [0.5,1.5]. We train
the model using the Adam optimizer [43] with a learning rate
of 10−4 and a batch size of 32. As a loss function we use binary
cross-entropy and an L2-regularization term with a lambda of
2× 10−4. During training, we monitor the loss on the held-out
validation set and terminate the training when the validation loss
stops improving.

To perform search using the ranking score from Sec. 4.3, we
first need to obtain the encodings of all the candidate patches.
We can choose how densely to sample the candidates, trading off
matching time for spatial precision. We extract patches that are
non-overlapping in time. When using patches that do not cover
the whole spatial domain (Sec. 6), the patches are extracted with
spatial stride equal to the quarter of their size. This introduces some

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

-0.01 0.22

Fig. 2: Our interactive prototype for navigating an ensemble of spatiotemporal data, demonstrating query results on the cylinder dataset.
In the navigation panel (1) we render a timestep rollout of all the members, showing markers for the query patches (5), ranking score (6,
colorbar below) and highlighting the timesteps that match (7). In panel 2 we show sorted ranking scores of all patches in the ensemble.
This gives an impression of their distribution and allows us to select which patches are considered to be a match. In panels 3 and 4 we
show the contents of the query and the full list of matching patches.

redundancy, since the patches overlap, but enables us to better study
the spatial properties of our method.

Prototype system. To better demonstrate the utility of our rank-
ing score and learned similarity metrics in general, we developed
a prototype system for navigating ensembles of spatiotemporal
data. This is a challenging task, especially for ensembles with a
large number of members, making it prohibitive to manually search
for the behavior of interest. Our system addresses the problem by
allowing the user to find instances of the behavior with only a
handful of examples. This reduces the effort for the user, as well
as avoids rendering large amounts of data at once. It also reduces
the risk of missing good matches compared to the manual search.

In our prototype, we limit ourselves to working with patches
that spatially cover the whole domain, i.e., temporal slices (we
investigate spatial aspects in Sec. 6.1). The front-end interface of
the system is shown in Fig. 2, with the cylinder dataset loaded
(depicting flow around a cylinder at the bottom of the domain).
The navigation panel (1) is the main component of the UI. Here
we present each ensemble member as a row containing a list
of renderings of its timesteps. The user can click on a timestep
to include a patch starting on this timestep into the query. We
show the contents of the query using green and red marks (5)
in the navigation panel, as well as a separate list in the query
panel (3). The green marks correspond to positive examples and
red to negative. Once the query is formed, the user can use the
controls (2) to execute the query, loading the results from the back-
end. The results are presented in several ways. First, we encode
the ranking score (similarity) of every patch in the ensemble as a
colored bar right below the timestep renderings (6, colorbar below).
The best N matching patches are highlighted with green (7) in
the navigation panel and are also shown as a list in the matches

panel (4). To allow the user to configure the value N, we show
the ranking score graph (2), plotting the sorted ranking scores of
all the patches in the dataset. This gives an overall impression of
the distribution of ranking scores and enables the selection of the
cut-off line, i.e., how many top matches to display. Finally, the user
can also sort the members in the navigation panel, according to the
current query: members mentioned in the query itself are shown on
top, followed by the members with the most matches. This makes
it possible to quickly see the most relevant members for the current
query and its results.

6 QUALITATIVE EVALUATION

In this section, we perform a qualitative evaluation, demonstrating
specific queries and their outcome (Sec. 6.1). We then show how
our approach compares to results manually crafted by a domain
expert (Sec. 6.2) and discuss her feedback (Sec. 6.3).

6.1 Query results
First, we demonstrate the search results on the “droplet splash”
dataset, which is an ensemble of experiments containing
monochrome camera images of a single droplet impacting a thin
liquid layer. Using different fluids, droplet size and impact velocity
result in different impact regimes such as deposition, bubble
formation or splashing, i.e., secondary droplets separating. There
are 110 members, each ranging from 44 to 538 timesteps with a
spatial size of 224×160. We used patches with a temporal size of
three timesteps and a spatial extent of 50, and the neighborhood
size is defined as ot = 9,os = 60. This experimental ensemble is
particularly challenging, as it contains images with differences in
panning, zoom and illumination. Conventional similarity metrics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

id:7 t:23 id:15 t:31 id:54 t:30 id:60 t:15

id:5 t:24 id:76 t:27 id:15 t:39 id:16 t:36 id:16 t:33 id:16 t:39 id:15 t:42 id:76 t:21 id:12 t:33 id:75 t:27 id:2 t:36 id:76 t:24 id:76 t:30 id:12 t:30 id:44 t:39

id:34 t:36 id:12 t:27 id:34 t:27 id:33 t:24 id:15 t:33 id:15 t:30 id:15 t:36 id:44 t:33 id:16 t:30 id:44 t:36 id:16 t:27 id:34 t:45 id:44 t:30 id:40 t:27 id:15 t:27

0.028 0.033

(a) A query for crowns.

id:0 t:31 id:1 t:38 id:9 t:40 id:0 t:21 id:69 t:12 id:54 t:29

id:0 t:45 id:0 t:42 id:0 t:36 id:0 t:48 id:0 t:39 id:9 t:39 id:66 t:54 id:66 t:57 id:9 t:60 id:0 t:33 id:0 t:51 id:66 t:48 id:66 t:51 id:0 t:54 id:9 t:42

id:9 t:36 id:9 t:45 id:9 t:57 id:66 t:45 id:66 t:60 id:0 t:57 id:66 t:42 id:66 t:63 id:9 t:48 id:9 t:51 id:0 t:30 id:66 t:39 id:0 t:60 id:9 t:33 id:66 t:36

-0.05 -0.03

(b) A query for droplet splashing.

id:97 t:147

id:63 t:60 id:97 t:165 id:101 t:54 id:100 t:54 id:62 t:81 id:71 t:120 id:65 t:39 id:68 t:81 id:89 t:81 id:64 t:24 id:102 t:57 id:99 t:54 id:69 t:126

0.00 0.07

(c) A query for fuild jets.

id:0 t:31 id:1 t:38 id:9 t:40 id:0 t:21 id:69 t:12 id:54 t:29

id:66 t:0 id:66 t:3 id:66 t:69 id:64 t:3 id:64 t:48 id:64 t:39 id:64 t:45 id:65 t:72 id:64 t:42 id:64 t:60 id:64 t:51 id:64 t:63 id:64 t:54 id:65 t:90 id:63 t:12

-2811.8 -2658.0

(d) MSE results for the query from b.

Fig. 3: Query results on the droplet splash dataset. In the top left, we render the query patches (their first timestep). Positive examples are
marked with + and negative with -. We take 500 best matching patches and render the timestep they start on, sorted by the number of
matches in that timestep (to see the frames with many good matches first). The member ID and the timestep index are printed below each
frame. We color the matching patches based on their score, where blue means better matches. As we see in a, b, our method finds many
diverse examples of the queried behavior. Even with a single patch of rare behavior (c) we can find its other instances (here we show
only one frame per member for brevity). Compared to the MSE baseline in d, our method returns results that are much more useful. An
extended version of this figure can be found in the appendix.

often yield poor results under these conditions (see discussion
below). However, since our model is trained on the dataset, it is
able to learn some of these invariances and performs robustly.

In Fig. 3 we present the results of different queries. First,
we performed a query searching for fluid crowns (Fig. 3a). The
query contains three positive examples of crowns and one negative
example with the initial droplet collision that occurs just before
a crown is typically formed. In the results, we present the best
matching patches rendered in the context of the data. Specifically,
we took 500 best matching patches and grouped them by the
timestep they begin on. We render timesteps that have the highest
count of matches, highlighting the matching patch locations. The
patch rectangles are colored according to their ranking score and
rendered in worst-to-best order. Thus, in the locations where
multiple patches overlap, we see the best-ranking score for
that location. We observe that the results contain examples of
crowns with varying shapes coming from many different members
(specified by their ID). Despite the significant optical differences
between the experiments, the method is able to detect relevant
behavior. Furthermore, we see that beyond determining the member
and the timestep where the behavior took place, we also receive
spatial information: the best matching patches are well aligned
spatially with the feature of interest. For an example of constructing
queries interactively, see the supplementary video.

Another query is shown in Fig. 3b. Here we search for instances
of splashing, i.e., secondary droplets forming after the collision. We
see that the results again contain a diverse set of patches matching
our query. Even though direct differences between the patches
with secondary droplets are large, our method can still find them.
We found a few examples that initially look like crowns (see also
appendix), but on closer inspection, they turn out to be crowns
that have just transformed into a spray of secondary droplets, thus
matching the query. This hints at a property that follows from
the training process: since we train the model by encouraging
spatiotemporal coherence, we expect the matching to be somewhat
“fuzzy”, also having low distances to spatially and temporally
neighboring behavior.

For comparison, in Fig. 3d we show the same query but using
MSE as the similarity metric for the ranking score. The search
does not yield meaningful results, among others returning patches
with empty space, since MSE heavily prioritizes the background
and misses the droplets. It returns one valid timestep by matching
the background, but this is only a rare outlier. In contrast, the top
model-based results (Fig. 3b) contain precisely the relevant patches
with splashing droplets.

Although crowns and secondary droplets are the key features
of this dataset, we also want to investigate if the method is capable
of finding rare events. We constructed a query with just a single

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) Results by the domain expert [44]. (b) A query for splashing. (c) A query for deposition.

Fig. 4: Comparison of manual domain-specific results to our method. a: Parameter space map of droplet impact regimes manually
constructed by the domain expert. b: Ranking scores of ensemble members for a splashing query (see Fig. 3a). We find structure similar
to (a), with best matching experiments (in blue) being located in the top-left quadrant of the parameter space and a similar transition
region (the transition line from (a) plotted for comparison). We also found a poor-matching outlier region (marked “1”). A closer
investigation led to the discovery of a region containing bubble formation and deposition that was previously unknown to the expert. c:
Ranking scores for a deposition query. We find best-matching experiments to have lower Weber number or higher film thickness, in
accordance with domain-expert results. A few experiments (marked “2”) are matched moderately well by both queries because they
display both bubble formation and splashing.

patch containing a fluid column with a droplet separation (Fig. 3c).
This figure, shows only the best frame of each matched member
to conserve space (full result in the appendix). Here we note two
types of matches. First, we see some crowns that have distinct fluid
columns with droplets separating (id 63 and 101). Since separation
occurs simultaneously in several locations, we get a lot of matches,
and the corresponding timesteps get sorted to the top. Then, we
also see some matches with a single fluid column. Some are from
the query member (id 97), but some point towards other members
with similar behavior (id 62, 71 and 89). Despite this event being
much less typical for the ensemble, our approach was able to find
similar instances with just a single example.

Next, we evaluate the temporal aspects of our metric on the
“cylinder” dataset. This dataset is a CFD simulation ensemble
of flow around a cylinder obstacle. Depending on the Reynolds
number and the obstacle configuration, one observes different
degrees of turbulence in the flow. We cropped the spatial domain,
such that the obstacle is no longer visible (only the channel), so that
the matching algorithm cannot “cheat” by comparing the obstacles.
We used 300 ensemble members, where each member is a scalar
velocity magnitude field with 39 timesteps and the spatial domain
size 84× 220. For this dataset, we focus on behavior extending
over the whole spatial domain, so we use patches with the temporal
size of three and spatial size equal to the data domain size, while
the neighborhood size is ot = 9. In Fig. 2, we used our prototype to
perform a query for turbulent members, providing two examples of
turbulence and one negative example containing laminar behavior.

As we can see, after sorting the members by the number
of matching patches, we find many other members containing
turbulent behavior. Notice that the exact geometry of the flow can
be very different, but the model still considers them similar due
to invariances learned during training. We also observe that the
matching is successful temporally: we identify the point in time
when the turbulence starts to occur.

6.2 Parameter space analysis

Next, we evaluate our results on the “droplet splash” dataset in
comparison with the extensive manual analysis by a domain expert.
This dataset was collected to study droplet impact regimes wrt.

experimental parameters such as fluid viscosity, droplet velocity,
film thickness, etc. In the previous analysis [44], the expert has
taken a subset of the ensemble depicting a particular fluid and has
manually constructed a regime map of the parameter space, shown
in Fig. 4a. As we change the droplet velocity (Weber number) and
the film thickness, we observe qualitatively different outcomes, with
a thicker film and a slower droplet leading to cleaner deposition.

To compare our method’s ability to detect different impact
regimes, we performed two queries, one for splashing (also
in Fig. 3b) and another one for deposition. Then, we computed
a ranking score for each ensemble member by simply taking the
minimum score of all the patches from a given member. Thus, if
a member contains a well-matching patch, the member itself is
considered to be well-matching. We visualize the member scores
positioned in the parameter space to compare them to the regime
map that was constructed manually by the domain expert.

In Fig. 4b we show the splashing query results. The best-
matching members are located in the top-left corner (high velocity,
thin film), and we can see that the score degrades as we move
bottom-right, forming a transition region, which aligns well with
the expert results. We plot the transition line from the expert map
to make the comparison easier. Here we noticed a region with some
poorly-matching outliers in the top-right quadrant (marked with
“1”). After consulting with the domain expert and checking the
experiment images, we found out that there is a bubble deposition
subregime, which explained why the splashing query was not
matching well. More importantly, its existence was previously
unknown to the expert, highlighting one of the strengths of our
method: being able to detect features of the data that the domain
expert might have overlooked.

In Fig. 4c we show results of a deposition query. Here, as
expected, we get an inverse result: best-matching members contain
clean deposition and are located in the bottom right corner of
the parameter space (low velocity, thick film), and the splashing
members (top-left corner) have high scores, again corresponding
well to the results by the expert. We found one interesting
outlier (marked with “2”) that is matched reasonably well by
both the splashing and the deposition queries. Upon inspection,
we found that it contains a splashing phase, followed by a bubble

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(a) Crown query (ours).

(b) Crown query (SIFT).

(c) Splashing query (ours).

(d) Splashing query (SIFT).

Fig. 5: Comparison of our similarity metric to SIFT on the droplet ensemble. a, b: we see that both methods produce good results on the
fluid crown query, as it is very suitable for the SIFT descriptors. c, d: However, on the splashing query our method returns more robuts
results, as SIFT is struggling to match small disperse droplets. An extended version of this figure can be found in the appendix.

phase, and since we use the minimum function to aggregate the
patch scores for this figure, the member was matched well by both
of the queries, each matching an appropriate time range.

Overall, we confirmed that our technique yields meaningful
results when applied to data from this domain, successfully finding
different types of behavior with a few simple queries. The results
exhibit a high degree of similarity to the manually-constructed
regime map, which the domain expert also pointed out (Sec. 6.3).

6.3 Domain expert feedback

As part of our evaluation, we discussed our results on the droplet
splash data with a domain expert in droplet dynamics. She collected
and extensively analyzed the experimental ensemble data. We
performed searches for several droplet regimes (e.g. Fig. 3), which
were previously studied by manually selecting relevant members
and time ranges that were fed into ad-hoc Matlab scripts for further
analysis. The expert noted very good agreement for detection of
droplet splashing and deposition with bubble formation and fair
results for queries of crown-forming deposition and jet formation.
However, the query for splashing with bubble formation had a
lot of unexpected matches. Here our method produced many
matches containing crown-forming splashing, confusing bubbles
with transparent crowns. Our parameter space comparison (Sec. 6.2)
was viewed very positively: “In my opinion, the results are very
good. The splashing limit is quite well reproduced in your maps.”.
The expert also pointed out that we found a small region that was
previously inaccurately classified: “You detected a small region of
bubble formation and deposition, which we did not recognize or to
be precise which we counted as splashing”.

She was very optimistic about the utility of the system in her
workflow: “I think such a tool would have been and would be very
useful for us because all the regime maps and splashing limits were
derived by manually digging through every video and deciding
what we see. [...] A tool like yours would make it much easier if we

are looking for example at a special feature like jet formation.” As
a suggestion, she noted that the current results for splashing with a
bubble could be further improved by performing iterative searches,
i.e., first searching for a generic regime and then narrowing down
the results with more specialized queries. Overall, we received very
positive feedback about our technique, suggesting that our domain-
agnostic method can act as a useful building block in addressing
domain-specific problems.

7 COMPARATIVE EVALUATION

In this paper, we aim to demonstrate that machine learning can be
used to construct an effective spatiotemporal similarity metric
in a domain-agnostic fashion. This section discusses existing
approaches to computing a spatiotemporal similarity metric and
perform a qualitative comparison to some of these techniques. In
the next section (Sec. 8), we also compare quantitatively to many
more alternative methods.

7.1 Alternative approaches

A similarity metric is an important component of many ensemble
visualization approaches. Thus many other possibilities have been
proposed. These can be roughly split into two categories. First, there
are mostly generic vector, image or distribution distances, such as
MSE (L2), L1, EMD, SSIM and local histogram differences. Such
similarity metrics can be applied directly to the raw data and are a
very common choice in modern ensemble visualization literature
(see Table 2 in the survey by Wang et al. [1]). The other group of
methods extracts domain- or problem-specific features from the
data (e.g., vorticity or λ2 for CFD datasets) and computes distances
in that feature space.

The former metrics are the most appropriate to compare with
our technique, as they are widely used in recent work and are
similarly domain-agnostic. We compare our method to many

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 6: Comparison of our method to Wang et al. [13] on the example of the 3D Isabel dataset. The figure is analogous to Fig. 1 in
their paper. We provided a single query patch of the hurricane eye in timestep 20 (left) and then render the best matching patch in the
following timesteps. As we see, similarly to the method of Wang et al., we are able to track the eye of the hurricane.

of these metrics in our quantitative evaluation in Sec. 8. The
comparison to the latter group is less appropriate since we are
proposing a general domain-agnostic technique. While problem-
specific solutions might outperform a general method, they cannot
be applied to data from different domains, which is the core
motivation for a learning-based similarity. Nevertheless, we still
compare with two specialized methods in Sec. 7.2 and Sec. 7.3. We
have chosen these approaches because they rely on a commonly
used algorithm (SIFT), are somewhat data-agnostic (within their
domain) and do not rely solely on basic distance metrics, improving
the diversity of our evaluation. With this, we demonstrate that our
generic metric yields similar performance while not relying on
domain-specific features.

7.2 Comparison to SIFT

In this section, we compare the results of our similarity metrics
to those computed with SIFT [45]. SIFT is a computer vision
technique for computing image keypoints and their local feature
descriptors that are invariant to illumination, scale and orientation
changes. Since SIFT is a robust matching algorithm that can, in
principle, be applied to any scalar field, it provides an interesting
comparison for our approach.

We applied the SIFT algorithm (which computes sparse image
correspondences) to perform our patch-based queries as follows.
First, we compute SIFT keypoints for all the timesteps and all the
members of the ensemble dataset. By computing the keypoints
over the whole spatial domain (as opposed to a given patch), we
make sure that any large-scale keypoints would still be correctly
extracted. Next, we define the SIFT distance between two patches as
the minimum SIFT-descriptor distance between any keypoints lying
within the patches. Given a query consisting of several positive
and negative examples, we compute the ranking score according
to Eq. 2, i.e., the average SIFT distance from all the query patches
to a candidate patch, where negative patches contribute negatively.
This way, we compute the SIFT-based ranking score from the query
to every dataset patch and find the best matches.

The results for the “droplet splash” are presented in Fig. 5.
In Fig. 5a and Fig. 5b we show the results for the same crown
query obtained using our model and the SIFT-based method. As
we can see, SIFT produces a very accurate matching, which is
not surprising: the dataset of camera images and the characteristic
corners of the crowns provide an ideal application scenario for SIFT.
Our model also successfully finds crowns in the data, though it also

sometimes matches similar bubble deposition (this is discussed in
more detail in Sec. 6.3).

Next, we perform a query for splashing (Fig. 5c, Fig. 5d), and
here we see that SIFT performs much less robustly, also returning
some crown deposition cases. The reason behind this is that a
spray of small droplets does not yield robust SIFT keypoints, thus
leading to worse performance. In contrast, our method has learned
dataset-specific features and is thus able to return accurate matches.

Overall, we found that our method performs well compared
to SIFT-based matching on this dataset of camera images and
even outperforms it in some scenarios. Furthermore, we were
unable to apply SIFT to our “cylinder” CFD ensemble (described
in Sec. 6.1) because SIFT is not extracting any keypoints for most
of the timesteps of this smooth dataset, while our method still
performs robustly. This once again demonstrates the advantages of
our generic similarity metric.

7.3 Comparison to Wang et al. [13]

In order to demonstrate that our approach can qualitatively match
the results obtained with more traditional non-ML methods, we
compare to the results from Wang et al. [13]. They introduced a
method for finding similar regions in vector fields, which is used to
return matches for a user-provided query region. First, they extract
a pre-defined set of vector field features (called traits): divergence,
the norm of Jacobian, etc. Then, SIFT-matches are computed in
each field and used as match candidates. This serves to reduce the
search space, as well as align the candidate regions with the query.
Finally, they use the weighted L2 norm to evaluate the similarity
of candidates to the query region. Notably, the method relies on
a fixed set of features and can only be applied to vector fields.
As discussed in Sec. 7.1, our approach prioritizes generality and
thus only relies on a single raw scalar field. We also compare with
applying SIFT to raw data in Sec. 7.2.

To compare to the results by Wang et al. we apply our method
to the Isabel dataset, using the 3D+T version of our encoder (Sec. 5)
and a 3D+T patch size 3×15×50×50, matching the proportions
of the Isabel dataset. Unlike Wang et al., we are only using a single
scalar field as input – the velocity magnitude. After training the
model, we performed a query that aims to reproduce the result
in their teaser image (Fig. 1 in [13]). In the query, we provided
a single patch near the eye of the hurricane at timestep 20, and
in Fig. 6 we visualize the best-matching patch in each of the
following timesteps, rendering it as a transparent red box. Here

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Ours VGG MSE EMD Hist-EMD
Feature Patches C P10 P50 P100 C P10 P50 P100 C P10 P50 P100 C P10 P50 P100 C P10 P50 P100

turb 1+0- 72.9 100.0 84.0 77.0 65.0 100.0 90.0 72.0 42.4 90.0 50.0 45.0 38.5 100.0 62.0 39.0 56.5 70.0 56.0 54.0
turb 2+0- 67.6 100.0 88.0 74.0 64.1 100.0 90.0 73.0 39.4 90.0 50.0 42.0 38.5 90.0 60.0 41.0 60.0 90.0 48.0 54.0
turb 3+0- 78.2 100.0 96.0 88.0 66.8 100.0 94.0 77.0 36.8 70.0 44.0 41.0 35.0 80.0 42.0 36.0 59.1 20.0 52.0 56.0
turb 1+1- 80.3 100.0 100.0 83.0 69.4 100.0 94.0 75.0 53.8 90.0 56.0 54.0 52.1 50.0 64.0 54.0 54.7 60.0 56.0 56.0
turb 2+2- 82.6 100.0 96.0 87.0 69.4 100.0 92.0 76.0 52.1 90.0 56.0 52.0 47.6 50.0 64.0 53.0 57.4 50.0 54.0 56.0
turb 3+3- 88.5 100.0 100.0 92.0 76.5 100.0 100.0 81.0 52.1 70.0 58.0 53.0 48.5 50.0 64.0 53.0 56.5 60.0 54.0 56.0
lam 1+0- 63.7 100.0 100.0 90.0 73.7 100.0 94.0 89.0 64.2 100.0 76.0 77.0 65.1 100.0 94.0 86.0 60.9 90.0 54.0 49.0
lam 2+0- 66.2 100.0 100.0 93.0 73.7 100.0 100.0 90.0 64.2 100.0 100.0 87.0 64.2 100.0 100.0 92.0 60.9 90.0 54.0 49.0
lam 3+0- 64.6 100.0 100.0 95.0 73.7 100.0 94.0 90.0 65.1 100.0 98.0 86.0 65.1 100.0 94.0 91.0 62.8 90.0 56.0 59.0
lam 1+1- 79.6 100.0 100.0 100.0 71.7 100.0 90.0 88.0 62.3 60.0 72.0 68.0 61.7 50.0 58.0 71.0 63.6 90.0 52.0 50.0
lam 2+2- 81.2 100.0 100.0 100.0 76.4 100.0 98.0 91.0 64.0 70.0 86.0 75.0 63.1 70.0 66.0 70.0 63.1 90.0 58.0 49.0
lam 3+3- 83.5 100.0 100.0 100.0 81.9 100.0 98.0 93.0 68.3 100.0 90.0 77.0 64.9 60.0 72.0 73.0 79.8 100.0 92.0 94.0

TABLE 2: Results of manually constructed queries on the cylinder flow ensemble. Each row depicts metric scores for one query. A query
contains either patches with turbulent (turb) or laminar (lam) behavior. The ’Patches’ column specifies how many positive and negative
patches each query contains. Different queries are constructed by editing previous ones. For example, the turbulent query ’turb 3+3-’
contains the same three positive patches as ’turb 3+0-’, but we added three negative non-turbulent patches. We show four quality metrics:
coverage (C) and precision (P) at three different ranks. We render query matches in Fig. 7. Our model achieves significantly better results
than the various baselines.

1 2 3 4 5 6 7 8 9 10 46 47 48 49 50 96 97 98 99 100 996 997 998 999 1000 3895 3896 3897 3898 3899

turb 1+0-

turb 3+0-

turb 1+1-

turb 3+3-

Fig. 7: Corresponding renderings to matches of turbulent queries from Tab. 2. Each row corresponds to a query. On the left are the query
patches, and on the right, we show respective matches. We only render the first frame of each patch. We show the top 10 matches as well
as some examples of lower matches. The icon on the query patches indicates whether a patch is a positive (+) or a negative (-) example.

we sampled candidate patches with stride equal to a quarter of the
patch size to provide better spatial precision. As we can see, we
are able to reproduce the result, effectively tracking the eye of the
hurricane, while using only a single scalar field and not relying on
any vector field features. This demonstrates the model’s ability to
learn relevant features during the self-supervised training.

8 QUANTITATIVE EVALUATION

Next, we perform a quantitative evaluation of our method, aiming
to assess its accuracy and compare it to alternative approaches.
However, we do not have the ground truth describing what behavior
occurs in different parts of the data or the similarity of different
data patches. In fact, this is the very problem that we are addressing
with our method. Thus, to enable the evaluation, we have manually
labeled a small subset of the “cylinder” simulation ensemble (25
out of 300 members). This ensemble exhibits a range of different
outcomes, however, there are two overall behavior types that we can
approximately distinguish: turbulent and laminar flow. Importantly,
this behavior occurs across the whole spatial domain, which means
that we only need to label timesteps.

With this, we assess accuracy using different search quality
metrics (Sec. 8.1), both for our method and four alternative
approaches (Sec. 8.2). Then in the following sections, we discuss
results on manual as well as random queries, quantify model
variance and its generalization performance.

8.1 Quality Metrics

Given a query, our method assigns a score to each patch in the
data, effectively ranking the patches based on how well they match
the query. Assuming that the positive patches in the query all
contain some sought-after behavior A and all negative patches
do not contain behavior A, we get the binary ground truth of
patch relevance: patches with behavior A are relevant, and patches
without behavior A are irrelevant. With this, we compute precision
at three different cut-off ranks of 10, 50 and 100, e.g., Precision@50
is the percentage of relevant patches in the top 50 matches. In an
interactive search scenario, it would be unreasonable to consider
cut-off values above a few hundred for user investigation.

Aiming to also measure the result completeness, we designed
a metric suitable to our problem. We compute timestep coverage,
i.e., what percentage of timesteps exhibiting the queried behavior
is included (covered) in the top N patches. And we determine N to
be the minimum amount of patches needed to cover all the relevant
timesteps. A ranking score that prioritizes patches with matching
behavior will have higher coverage. The metric is less sensitive
to the changes in the patch size, whereas precision may be more
optimistic when the patch size is small and many candidates are
available. Furthermore, the coverage metric considers how patches
are positioned near the borders of feature regions: missing a patch
that barely touches a relevant region has less penalty than missing
a patch in the middle of the region.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

turb 1+0-

C P10 P50 P100

turb 3+0-

turb 1+1-

turb 3+3-

lam 1+0-

lam 3+0-

lam 1+1-

 0 100

lam 3+3-

 0 100 0 100 0 100
Ours VGG Hist-EMD MSE EMD

(a) Including all results.

turb 1+0-

C P10 P50 P100

turb 3+0-

turb 1+1-

turb 3+3-

lam 1+0-

lam 3+0-

lam 1+1-

 0 100

lam 3+3-

 0 100 0 100 0 100
Ours VGG Hist-EMD MSE EMD

(b) Excluding query members.

Fig. 8: Measuring the distribution of search quality for “cylinder” wrt. randomly sampled queries. Each row represents a query type, e.g.,
’turb 3+1-’ means queries containing three random turbulent patches and one random non-turbulent patch. In the columns, we compute
the same quality metrics as in Tab. 2, with all metrics ranging from 0 to 100. a: Our model shows better results than the baselines,
especially on larger queries. We also see that the variance is reduced when more examples are used in the query. b: We evaluate the
model’s generalization by excluding patches from members mentioned in the query. Performance is slightly worse (as expected when
removing the best matches), but the model is still successful. This suggests that the model generalizes beyond the pretext task and finds
other instances of behavior.

turb 1+0-
C P10 P50 P100

turb 3+0-
turb 1+1-
turb 3+3-
lam 1+0-
lam 3+0-
lam 1+1-

 0 100

lam 3+3-
 0 100 0 100 0 100

Fig. 9: The variance of search quality wrt. training process. Here
we have trained our model ten times and performed the search
with each one. We used the same manually constructed queries as
in Tab. 2. While some variance is present, it is not significant and
decreases with increasing query size.

8.2 Baseline methods

We compare our model against many other similarity metrics: mean
squared error (MSE), earth mover’s distance (EMD), EMD applied
to histograms (Hist-EMD) and a metric based on a pre-trained
VGG16 model. In the appendix, we also show results for structural
similarity (SSIM), L1 distance applied to histograms (Hist-L1)
and fine-tuned VGG variants. To implement search using these
metrics, we replace our model-based similarity metric d with the
baseline metric when computing the ranking score from Eq. 2.
For the MSE metric, we compute the squared difference between

the two spatiotemporal patches. We compute the EMD using the
POT library [46] implementation of the Sinkorn algorithm [47],
computing the distance between the first timesteps, downsampled
by the factor of four. Even with these simplifications, it takes around
two days to perform the EMD computations for the evaluation on
the “cylinder” ensemble. Hist-EMD is computed as the distance
between the patch data sorted into a histogram. VGG16 [48] is
a large computer vision model (100 million parameters vs. our 2
million) pre-trained on a big image classification dataset. VGG
has been shown to generate generic features that are useful for
estimating image similarity [49]. By comparing with it, we want to
check if our encoder is learning useful problem-specific features or
if it can be replaced with a powerful but generic computer vision
model. The VGG metric is computed by putting the first frame of
each patch through the VGG16 model and computing the distance
in its learned feature space. Specifically, we take the output of the
“fc1” layer and compute the Euclidean distance.

8.3 Query results

We manually prepared two groups of queries containing typical lam-
inar and turbulent patches. The quantitative metrics are presented
in Tab. 2 and the rendered matches are shown in Fig. 7. First of
all, we see that overall the model-based search outperforms all the
baselines, especially the non-ML methods. Specifically, the model
shows both higher precision in the top results and higher coverage.
The difference between the methods is generally less pronounced
on the laminar queries because this scenario is more favorable for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

our baseline methods (especially MSE and EMD), since laminar
members often have very small direct differences to each other. We
also notice that the other learning-based method VGG achieves
better coverage on the first three queries than our approach. This is
because our model learns spatiotemporal aspects of the dataset and
might, for example, consider slightly turbulent members similar to
laminar, which is not accounted for by our binary labeling. Thus,
in this particularly simple scenario of laminar behavior, it might
perform slightly worse than a computer vision model. However,
adding even a single negative patch to the query significantly
improves the model’s performance, again putting it above all the
baselines. Another interesting observation is that the quality of the
model’s results generally improves as we expand the query. This
is not always the case for other methods, e.g., MSE and EMD:
especially for the turbulent queries, additional patches sometimes
do not improve the result or even worsen the performance. Even a
slight temporal shift or a difference in phase can result in very large
MSE distances, worsening its results, while the model has learned
these invariances during the training. For example, notice in Fig. 7
that some of the matched patches have different phases (velocity
peaks do not align). Furthermore, our model is more consistently
benefiting from negative query patches, while other methods benefit
from them only under certain circumstances.

8.4 Variance quantification
Query sampling variance. Now we aim to evaluate the accuracy
across a large number of possible search queries. For this, we
defined 12 search query types by specifying sought-after behavior
(turbulent or laminar) and the number of patches in the query. Then
for each search type, we randomly generated 100 queries, utilizing
the labels to ensure that each query contains appropriate patches.
We present the results as a table of boxplots in Fig. 8a. Most
importantly, we again find that the model performs better than the
baselines, and the effects described in Sec. 8.3 are still present
when measured over a large sample of queries. However, we also
see that non-ML results (MSE, EMD, Hist-EMD) sometimes have
lower variance. This is explained by the fact that these methods
mostly find nearby patches (due to temporal coherence), which
gives consistent albeit poor results. Notice also that our model’s
results again tend to improve not only in accuracy, but also in terms
of uncertainty as more patches are provided in the query.

Model training variance. One potential concern when using
ML-models is the variance introduced during the training process,
especially when transferring the model’s representation to another
task. To quantify the impact of model training, including training
data sampling, weight initialization and data shuffling, we per-
formed the training ten times and applied the resulting models to
the twelve queries from Sec. 8.3. We observe that the model results
indeed exhibit some variance, however, it is significantly below the
query variance and stays consistently above the baselines (Fig. 9).
Additionally, we see that the results are the noisiest when using
queries with few patches, but as more patches are added, the
uncertainty gets considerably reduced. We believe that this effect
is similar to ensemble averaging, as we effectively average several
instantiations of our convolutional encoder.

8.5 Model generalization
Another important aspect of a model’s performance is its general-
ization properties across different tasks. Since we train the model
on the pretext task, we want to make sure that we “get out” more

than we “put in”, i.e., that our model does not simply find patches
from nearby locations. While finding similar patches from similar
locations is useful, ideally the model should also generalize to
other instances of similar behavior. To study this, we have used the
same setup as in Sec. 8.4, sampling random queries and measuring
search result metrics. However, we made a crucial modification:
we remove from the list of candidate patches those patches that
come from ensemble members mentioned in the query. This way,
a model that simply solves the pretext task would only find the
members from the query and show poor results on the out-of-query
data. The results are presented in Fig. 8b.

Overall we can see that the performance is comparable to our
previous experiments in Sec. 8.4, again demonstrating better results
than the baselines. This suggests that the model indeed generalizes
beyond finding patches from the same ensemble members. We
observe some decrease in accuracy, but this is reasonable, since
patches from members included in the query usually contain the
most similar behavior and are expected to be among the top results.
Thus, removing them from the pool of valid matches slightly lowers
the quality metrics.

8.6 Performance and ML metrics
On the “droplet splash” dataset, the siamese model was trained
with 45GB of data (500k points) on a desktop NVIDIA GTX 2070
graphics card in 4 hours and 20 minutes, achieving 94.7%
training and 94.2% validation accuracy in 22 epochs. In our
prototype system, the encodings of the candidate patches are
precomputed (see Sec. 5), so the query performance is determined
by how fast query patch data is encoded and distances to candidates
are computed. A single-patch query in our prototype system takes
19ms to execute, where 3ms are spent encoding the patch on
the GPU. And a ten-patch query takes 178ms to execute, where
again only 3ms are spent encoding the patches (no impact due
to parallelism), with distance computations taking up the most
time. On the “cylinder”, the model was trained in 4h 25min to
97.7% / 97.8% accuracy; a one-patch query takes 8ms, and a ten-
patch query takes 41ms to execute. On the “Isabel”, the model
was trained in 3h 15min to 72.0% / 69.7% accuracy (if trained
further, the model overfits on this smaller dataset); a one-patch
query takes 5ms and a ten-patch query takes 31ms to execute. If
we sample patches 64 times more densely (Fig. 6), queries take
148ms and 1.3s, respectively. The above query timings are obtained
while preloading the ensemble data into memory to remove the IO
bottleneck of loading the patch data from disk. When this feature
is disabled (or if the ensemble is too large), a naive implementation
incurs an overhead of about 100-150 ms per ensemble member
present in the query. Note that, in general, we did not heavily
optimize our implementation for performance, and we believe
there is potential for improvement. In particular, the performance
of the prototype system could significantly be reduced with an
optimized parallel implementation, a spatial data structure or using
precomputed encodings for the query patches as well.

9 DISCUSSION

In this paper, we address an important challenge in visualization:
data-driven analysis of large amounts of unlabeled scientific
data. While we focus on using our learned metric to perform
search, our similarity metric can be useful for various visualization
techniques. For example, clustering algorithms are generally based
on quantifying distances, which our similarity metric could provide.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Some algorithms, e.g., hierarchical clustering, also use the distance
between a cluster and a point to compute clusters progressively.
Here, our ranking score can be used to help form more meaningful
clusters. Furthermore, a similarity metric can be utilized to perform
projections, producing both a more meaningful representation of
the overall ensemble and serving as a starting point for the search-
based exploration presented in this paper.

We demonstrated above that our model performs well on
the search task, clearly outperforming other problem-agnostic
approaches and even performing well compared to domains-
specific methods (see Sec. 7). Nevertheless, there is room for
improvement. While the model produces consistent results across
different training runs, it has quite a high variance wrt. random
queries (Sec. 8.4). There are several reasons for this. First, the
problem itself is uncertain: the goal is to detect high-level behavior
“types”, which can have rather vague boundaries. For example, for
some members of the cylinder dataset, it is difficult to say at what
exact point the transition to turbulence occurs. Another reason
is related: we are not certain that the random queries express the
behavior that we are trying to find. Indeed, we see that some queries
lead to better results than others, but we found that a common cause
of poor results is an “unclear” query. The model’s response might
be reasonable, but it doesn’t align with our expectations. Though,
the user can improve the query in such cases by providing additional
examples. Yet another aspect is that there is a disconnect between
the evaluation and the target application. During the evaluation, we
sample query patches independently, while in a practical scenario,
the next patch included by the user is conditioned on the previous
results. In other words, the user adjusts the query based on the
intermediate results, e.g., to filter out a false positive. We do not
model this effect in our evaluation metrics for simplicity, but it
should be done in the future, iteratively constructing queries by
including the incorrectly ranked patches into the query.

Overall, we see great promise in applying self-supervised
learning to the visual analysis of scientific data. Scientific data is
usually unlabeled, but it is often large and has enough structure and
metadata (coordinates, simulation parameters, multiple fields, etc.)
to set up a pretext task for training. In this work, we proposed an
approach that can be a starting point for many other research direc-
tions, both generic and domain-specific. Other model architectures
could be exploited to improve the performance or express additional
invariances, e.g., matching networks [50]. Also, many different
self-supervised tasks can be explored: autoencoders, temporal
prediction, variable reconstruction, and their combinations.

Another interesting direction for an extension is interpretable
ML. Providing additional insight into the latent vectors could
strengthen our method. One approach would be to add additional
constraints to the model. For instance, we can use spatial attention
to attribute different patch regions to latent dimensions and
distances between the vectors. Similarly, sparsity [51] and latent
distribution constraints [52] could be utilized to disentagle the
latent dimensions. Another approach would be to do feature
visualization, computing relevance scores [53] or visualizing input
patches that activate specific latent dimensions the most [54]. Both
ideas could even be combined, visualizing the model’s features
while constraining them to be more interpretable.

10 CONCLUSION

In this paper, we presented an approach to support the visual anal-
ysis of scientific data by constructing a spatiotemporal similarity

metric using self-supervised machine learning. We showed that this
metric allows for interactive search of similar behavior in ensemble
data. The metric was able to produce high accuracy results on
both experimental and simulation data, comparing well to manual
domain-specific results and even discovering new findings on well-
studied data. Overall, we see a lot of potential for self-supervised
machine learning in scientific visualization, with many exciting
directions for further research.

ACKNOWLEDGMENTS

This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC-2075 (SimTech) – 390740016.

REFERENCES

[1] J. Wang, S. Hazarika, C. Li, and H. Shen, “Visualization and Visual Anal-
ysis of Ensemble Data: A Survey,” IEEE Transactions on Visualization
and Computer Graphics, vol. 25, no. 9, pp. 2853–2872, Sep. 2019.

[2] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,
and Y. Wu, “Learning Fine-Grained Image Similarity with Deep Ranking,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2014, pp. 1386–1393.

[3] H. Obermaier and K. I. Joy, “Future challenges for ensemble visualization,”
IEEE Computer Graphics and Applications, vol. 34, no. 3, pp. 8–11, May
2014.

[4] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pascucci,
and C. R. Johnson, “Ensemble-Vis: A Framework for the Statistical
Visualization of Ensemble Data,” in In Proceedings of the 2009 IEEE
International Conference on Data Mining Workshops, 2009, pp. 233–240.

[5] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead,
“Noodles: A Tool for Visualization of Numerical Weather Model Ensemble
Uncertainty,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 1421–1430, Nov. 2010.

[6] J. Waser, R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl, and E. Groller,
“World Lines,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 16, no. 6, pp. 1458–1467, Nov. 2010.

[7] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller, “Visual
Parameter Space Analysis: A Conceptual Framework,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2161–2170,
Dec. 2014.

[8] S. Bruckner and T. Moeller, “Result-Driven Exploration of Simulation
Parameter Spaces for Visual Effects Design,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, no. 6, pp. 1468–1476, Nov.
2010.

[9] M. Hummel, H. Obermaier, C. Garth, and K. I. Joy, “Comparative Visual
Analysis of Lagrangian Transport in CFD Ensembles,” IEEE Transactions
on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2743–2752,
Dec. 2013.

[10] T.-H. Wei, C.-M. Chen, J. Woodring, H. Zhang, and H.-W. Shen, “Efficient
distribution-based feature search in multi-field datasets,” in 2017 IEEE
Pacific Visualization Symposium (PacificVis), Apr. 2017, pp. 121–130.

[11] A. Kumpf, M. Rautenhaus, M. Riemer, and R. Westermann, “Visual
Analysis of the Temporal Evolution of Ensemble Forecast Sensitivities,”
IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 1, pp. 98–108, Jan. 2019.

[12] M. Jarema, I. Demir, J. Kehrer, and R. Westermann, “Comparative visual
analysis of vector field ensembles,” in 2015 IEEE Conference on Visual
Analytics Science and Technology (VAST), Oct. 2015, pp. 81–88.

[13] Z. Wang, H. P. Seidel, and T. Weinkauf, “Multi-field Pattern Matching
based on Sparse Feature Sampling,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 807–816, Jan. 2016.

[14] L. Hao, C. G. Healey, and S. A. Bass, “Effective Visualization of Temporal
Ensembles,” IEEE Transactions on Visualization and Computer Graphics,
vol. 22, no. 1, pp. 787–796, Jan. 2016.

[15] W. He, H. Guo, H.-W. Shen, and T. Peterka, “eFESTA: Ensemble Feature
Exploration with Surface Density Estimates,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 4, pp. 1716–1731, Apr.
2020.

[16] A. Fofonov and L. Linsen, “Projected Field Similarity for Comparative
Visualization of Multi-Run Multi-Field Time-Varying Spatial Data,”
Computer Graphics Forum, vol. 38, no. 1, pp. 286–299, Feb. 2019.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[17] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A
Survey,” arXiv:1905.05055 [cs], May 2019.

[18] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A Survey
of Deep Learning-Based Object Detection,” IEEE Access, vol. 7, pp.
128 837–128 868, 2019.

[19] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep Filter Pairing
Neural Network for Person Re-identification,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition, Jun. 2014, pp. 152–159.

[20] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning
architecture for person re-identification,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 3908–
3916.

[21] Q. Huang, W. Liu, and D. Lin, “Person Search in Videos with One Portrait
Through Visual and Temporal Links,” in 2018 European Conference on
Computer Vision, Cham, 2018, pp. 437–454.

[22] W. Han, P. Khorrami, T. L. Paine, P. Ramachandran, M. Babaeizadeh,
H. Shi, J. Li, S. Yan, and T. S. Huang, “Seq-NMS for Video Object
Detection,” arXiv:1602.08465 [cs], Aug. 2016.

[23] G. Bertasius, L. Torresani, and J. Shi, “Object Detection in Video with
Spatiotemporal Sampling Networks,” in 2018 European Conference on
Computer Vision, Cham, 2018, pp. 342–357.

[24] J. Deng, Y. Pan, T. Yao, W. Zhou, H. Li, and T. Mei, “Relation Distillation
Networks for Video Object Detection,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Oct. 2019, pp. 7022–7031.

[25] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Dis-
criminative Unsupervised Feature Learning with Convolutional Neural
Networks,” in Advances in Neural Information Processing Systems 27.
Curran Associates, Inc., 2014, pp. 766–774.

[26] I. Misra, C. L. Zitnick, and M. Hebert, “Shuffle and Learn: Unsuper-
vised Learning Using Temporal Order Verification,” in 2016 European
Conference on Computer Vision, Cham, 2016, pp. 527–544.

[27] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised Visual Repre-
sentation Learning by Context Prediction,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1422–1430.

[28] C. Doersch and A. Zisserman, “Multi-task Self-Supervised Visual
Learning,” arXiv:1708.07860 [cs], Aug. 2017.

[29] K.-L. Ma, “Machine Learning to Boost the Next Generation of Visualiza-
tion Technology,” IEEE Computer Graphics and Applications, vol. 27,
no. 5, pp. 6–9, Sep. 2007.

[30] A. Endert, W. Ribarsky, C. Turkay, B. W. Wong, I. Nabney, I. D. Blanco,
and F. Rossi, “The state of the art in integrating machine learning into
visual analytics,” Computer Graphics Forum, 2017.

[31] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin, “Volume
Upscaling with Convolutional Neural Networks,” in Proceedings of the
Computer Graphics International Conference, ser. CGI ’17. New York,
NY, USA: ACM, 2017, pp. 38:1–38:6.

[32] J. Han and C. Wang, “TSR-TVD: Temporal super-resolution for time-
varying data analysis and visualization,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 26, no. 1, pp. 205–215, 2020.

[33] M. Berger, J. Li, and J. A. Levine, “A Generative Model for Volume
Rendering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 4, pp. 1636–1650, Apr. 2019.

[34] F. Hong, C. Liu, and X. Yuan, “DNN-VolVis: Interactive Volume
Visualization Supported by Deep Neural Network,” in 2019 IEEE Pacific
Visualization Symposium (PacificVis), Apr. 2019, pp. 282–291.

[35] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. G.
Nashed, and T. Peterka, “InSituNet: Deep Image Synthesis for Parameter
Space Exploration of Ensemble Simulations,” IEEE Transactions on
Visualization and Computer Graphics, pp. 1–1, 2019.

[36] W. He, J. Wang, H. Guo, H.-W. Shen, and T. Peterka, “CECAV-DNN:
Collective ensemble comparison and visualization using deep neural
networks,” Vis. Informatics, vol. 4, no. 2, pp. 109–121, 2020.

[37] J. Han, J. Tao, and C. Wang, “FlowNet: A Deep Learning Framework
for Clustering and Selection of Streamlines and Stream Surfaces,” IEEE
Transactions on Visualization and Computer Graphics, pp. 1–1, 2018.

[38] R. Guo, T. Fujiwara, Y. Li, K. M. Lima, S. Sen, N. K. Tran, and K.-L. Ma,
“Comparative visual analytics for assessing medical records with sequence
embedding,” Visual Informatics, Apr. 2020.

[39] G. Tkachev, S. Frey, and T. Ertl, “Local Prediction Models for Spatiotem-
poral Volume Visualization,” IEEE Transactions on Visualization and
Computer Graphics, 2019.

[40] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signa-
ture Verification Using a ”Siamese” Time Delay Neural Network,” in
Proceedings of the 6th International Conference on Neural Information
Processing Systems, ser. NIPS’93. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 737–744.

[41] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, Jun. 2005, pp. 539–546 vol. 1.

[42] G. R. Koch, “Siamese Neural Networks for One-Shot Image Recognition,”
in 2015 ICML Deep Learning Workshop, 2015.

[43] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Dec. 2014.

[44] A. Geppert, A. Terzis, G. Lamanna, M. Marengo, and B. Weigand, “A
benchmark study for the crown-type splashing dynamics of one- and
two-component droplet wall–film interactions,” Experiments in Fluids,
vol. 58, no. 12, p. 172, Nov. 2017.

[45] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov.
2004.

[46] R. Flamary and N. Courty, “POT python optimal transport library,” 2017.
[47] M. Cuturi, “Sinkhorn Distances: Lightspeed Computation of Optimal

Transport,” in Advances in Neural Information Processing Systems 26.
Curran Associates, Inc., 2013, pp. 2292–2300.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015.

[49] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
Unreasonable Effectiveness of Deep Features as a Perceptual Metric,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun. 2018, pp. 586–595.

[50] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching Networks for One Shot Learning,” in Advances in Neural
Information Processing Systems 29, 2016, pp. 3630–3638.

[51] A. Makhzani and B. J. Frey, “K-Sparse autoencoders,” in 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2014.

[52] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “Beta-VAE: Learning basic visual concepts
with a constrained variational framework,” in International Conference
on Learning Representations (ICLR), 2017.

[53] S. Lapuschkin, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, “On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation,” PLoS ONE, vol. 10,
Jul. 2015.

[54] C. Olah, A. Mordvintsev, and L. Schubert, “Feature Visualization,” Distill,
vol. 2, no. 11, p. e7, Nov. 2017.

Gleb Tkachev received his Masters degree in
computer science from the University of Stuttgart,
Germany. He is a PhD student at the University of
Stuttgart Visualization Research Center (VISUS).
His current research interests are focused on
combining visual computing and machine learn-
ing methods for the analysis of scientific data.

Steffen Frey received his PhD degree in com-
puter science from the University of Stuttgart,
Germany in 2014. He is an assistant professor
at the Bernoulli Institute at the University of
Groningen, Netherlands. His research interests
are in visualization methods for increasingly large
quantities of scientific data.

Thomas Ertl received the MS degree in com-
puter science from the University of Colorado
at Boulder and the PhD degree in theoretical
astrophysics from the University of Tübingen. He
is a full professor of computer science with the
University of Stuttgart, Germany in the Visualiza-
tion and Interactive Systems Institute (VIS) and
the director of the Visualization Research Center
(VISUS). His research interests include visualiza-
tion, computer graphics, and human computer
interaction.

	Introduction
	Related Work
	Motivation and Design Decisions
	Siamese Networks for Similarity Queries
	Pretext task and model
	Model training
	Similarity metric

	Implementation & Prototype System
	Qualitative Evaluation
	Query results
	Parameter space analysis
	Domain expert feedback

	Comparative evaluation
	Alternative approaches
	Comparison to SIFT
	Comparison to Wang et al. g:wang:2016

	Quantitative Evaluation
	Quality Metrics
	Baseline methods
	Query results
	Variance quantification
	Model generalization
	Performance and ML metrics

	Discussion
	Conclusion
	References
	Biographies
	Gleb Tkachev
	Steffen Frey
	Thomas Ertl

