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Abstract

Scatterplots are widely used in exploratory data analysis. Representing data points as glyphs is often crucial for in-depth
investigation, but this can lead to significant overlap and visual clutter. Recent post-processing techniques address this issue, but
their computational and/or visual scalability is generally limited to thousands of points and unable to effectively deal with large
datasets in the order of millions. This paper introduces Sca2Gri (Scalable Gridified Scatterplots), a grid-based post-processing
method designed for analysis scenarios where the number of data points substantially exceeds the number of glyphs that can be
reasonably displayed. Sca2Gri enables interactive grid generation for large datasets, offering flexible user control of glyph size,
maximum displacement for point to cell mapping, and scatterplot focus area. While Sca2Gri’s computational complexity scales
cubically with the number of cells (which is practically bound to thousands for legible glyph sizes), its complexity is linear with
respect to the number of data points, making it highly scalable beyond millions of points.

CCS Concepts
• Human-centered computing → Visualization;

1. Introduction

Scatterplots are among the most commonly used visualizations in
exploratory data analysis [SG18, YXX∗21, MPOW17]. Glyphs rep-
resenting individual data points such as images [ENP∗09] or other
complex visual encodings [CGSQ11] play a key role in detailed
analysis but are subject to substantial overlap and visual clutter. As
the overlap between glyphs representing data instances increases,
scatterplots become less effective [SMT13, SG18, YXX∗21]. This
overlap impairs comprehension [MG13a] and diminishes the ac-
curacy of analytical tasks [Elm05]. The issue is exacerbated when
glyphs carry more detailed information.

Approaches to address this problem can be divided into two
categories: (1) overlap-free and (2) overlap-removal strategies.
While overlap-free techniques aim to generate layouts without over-
lap [PdOdAL09,Pd09], overlap-removal methods focus on rearrang-
ing glyphs in a post-processing step to eliminate overlaps in a given
scatterplot while preserving the original layout characteristics as
much as possible. A major conceptual advantage of overlap-removal
approaches is that they are agnostic to how the scatterplots are
generated. For example, they can be combined with common dimen-
sionality reduction (DR) approaches like UMAP [MHM20] which
are widely used to uncover patterns in high-dimensional datasets.

Prior works on overlap-removal strategies employed cost-function
optimization [GRP∗14,GH10], triangulation [NNB∗16], orthogonal
scan-line algorithms [MELS95, HIMF98, DMS06, GPNB17], and
grid-based methods [CMC∗22, HMJE∗24]. However, they lack the

capabilities to computationally and/or visually deal with a large
number of points—hundreds of thousands, millions, and more—that
exceed what can adequately be presented directly with a grid.

This work proposes Sca2Gri (Scalable Gridified Scatterplots), an
overlap-removal method rapidly assigning millions of points P to
grid cells C. Addressing both visual and computational limitations,
Sca2Gri focuses on the efficient handling and interactive exploration
of scenarios where ∥P∥>> ∥C∥. This is highly relevant for large
data analysis as the feasible number of grid cells ∥C∥ is generally
limited to several hundreds at most—otherwise there are too many
and too small cells for effective glyph display—while ∥P∥ can easily
reach thousands to millions and beyond. You can find Sca2Gri’s code
at https://github.com/freysn/sca2gri. We consider
the main contributions of Sca2Gri to be as follows:

Scalability to Large Data. Fast (⪅ 50ms) generation of grids with
millions of points ∥P∥, targeting large data scenarios where
∥P∥>> ∥C∥. For this, Sca2Gri’s novel scheme crucially exhibits
linear complexity regarding ∥P∥.

Strict Upper Bound on Displacement. Threshold τ restricts the
maximum displacement in the assignments of points to cells.

Flexible Interactive Control. Users can interactively control the
generation of grids with millions of points via three intuitive
parameters: scatterplot area (z), (horizontal) grid resolution (gx),
and displacement relative to the presented area (τz).

High-Quality Grids. Generation of high-quality gridified scatter-
plots with gaps, demonstrating competitive performance to SOTA
for traditional ∥P∥ ≈ ∥C∥ scenarios across various metrics.
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2. Related Work

Occlusion in scatterplots is a widely recognized problem that nega-
tively affects the clarity of the visualization [Bra14, SMT13, SG18,
YXX∗21], impacts comprehension [MG13a], and reduces accuracy
in analytical tasks [Elm05]. Various strategies have been proposed
to mitigate this issue. In an early work, Carr et al. [DBCL87]
highlight the importance of dealing with overplotting in large scat-
terplots and discuss generally applicable interactive techniques
like subset selection and animation. Another direction aims to
adapt the glyph which represent individual points. Here, com-
mon approaches include adjusting transparency [MPOW17], resiz-
ing [LvM09, LMvW10], sampling [CGZ∗20, BS06], or employing
density and contour plots [CLNL87,TSW∗07,MG13b]. However,
the two most common strategies for resolving occlusion are so-
called overlap-free and overlap-removal approaches: overlap-free
techniques directly create layouts without overlap, while overlap-
removal methods rearrange glyphs in a post-processing step while
maintaining the original layout characteristics to the largest degree
possible. Sca2Gri belongs to the class of overlap-removal methods.

Early overlap-free layouts include IncBoard and HexBoard [PdO-
dAL09, Pd09]. Meulemans et al. [MDS∗17] explore the design
space offered by small multiples with gaps by means of various
metrics, and in a later work propose a three-step pipeline for gener-
ating coherent grid maps [MSS21]. Li et al. [LSL∗23] propose an
overlap-free method based on a dual space coupling model which
integrates a geometry-based data transformation algorithm, an ef-
ficient spatial mutual exclusion guided view transformation algo-
rithm, and an overlap-free oriented visual encoding configuration
model and a radius adjustment tool. Various distance-preserving
grid layouts have been proposed that do not use scatterplot layouts
as inputs [AR88,SG11,vKS04,Rai34,MH17,WDS10,EvSS13], but
we consider them to be outside of the scope of this work. That being
said, some of these techniques, such as Eppstein’s point-matching
method [EvSS13], minimize displacement between original and
grid-aligned points, similar to how Sca2Gri minimizes distortions.

Overlap-removal strategies like IsoMatch [FDH∗15], Kernelized
Sorting [QSST10], and NMAP [DSF∗14] use grid-based approaches
to map scatterplot points into orthogonal cells while preserving
distance. RWordle [SSS∗12] utilizes bounding boxes and a spi-
ral search for empty spaces. ProjSnippet [GRP∗14] maximizes
an energy function to maintain similarity relationships while re-
moving overlaps. Other techniques, such as MIOLA [GCNT13],
PRISM [GH10], and GTree [NNB∗16] employ optimization meth-
ods or triangulation, although they potentially introduce significant
distortions, reduce glyph size, or suffer from instability in dense
layouts. Hashedcubes enables the real-time generation of binned
scatterplots, linked histograms and heatmaps for the visual explo-
ration of large datasets [PSSC17].

Rearranging layouts by axis is another common approach. For
example, PFS [MELS95, HIMF98] moves glyphs horizontally and
vertically to eliminate overlaps, but does not preserve the aspect
ratio. VPSC [DMS06] defines non-overlap constraints for each
axis, but can significantly distort dense scatterplots. Recently, Ha-
grid [CMC∗22] uses space-filling curves to assign points to grid
cells, while ReArrange [GPNB17] employs a line-sweep algorithm
to address overlaps with minimal displacement, albeit at the cost of

distorting the aspect ratio. [BHJS23] propose a metric to evaluate the
quality of an arrangement based on user experiments, and introduce
a new algorithm for creating visually sorted grid layouts.

Several grid-based methods focus on similarity preservation. For
instance, Chen et al. [CYL∗21] use the Jonker-Volgenant algo-
rithm to assign projected samples to grid cells while minimizing
distant connections (we also employ Jonker-Volgenant in our imple-
mentation of Sca2Gri). Cluster-aware grid layouts [ZYC∗24] aim
to maintain cluster structures by optimizing proximity and com-
pactness. Techniques like Self-Organizing Maps (SOMs) [Koh90]
and Kernelized Sorting [QSST10] assign members to grid cells
based on similarity, but hash collisions and overlaps remain a chal-
lenge. Hilasaca et al. [HMJE∗24] propose a post-processing strategy
(DGrid) to remove overlaps while aiming to faithfully preserve the
original layout’s characteristics and bounding the minimum glyph
sizes. They demonstrate that DGrid surpasses the state-of-the-art
in overlap removal through an extensive comparative evaluation
involving various metrics. We employ a similar approach in our
evaluation and compare Sca2Gri against DGrid and Hagrid below.
NMAP [DSF∗14] and DGrid [HMJE∗24] use space partitioning and
multidimensional projections, while IsoMatch [FDH∗15] employs
a bipartite graph and the Hungarian method for grid assignments.
However, these techniques can be computationally expensive and
do not scale well to large numbers of points.

In general, grid layouts typically face scalability issues, partic-
ularly when the number of data points substantially exceeds the
number of grid cells that can effectively be shown. Hierarchical
techniques have been introduced to address this, organizing large
datasets into manageable grids while maintaining neighborhood
relationships and grid uniformity [Fre22]. Extensions beyond 2D
grids, such as hierarchical clustering [Joh67] or treemaps [WD08],
offer scalable solutions but cannot preserve the scatterplot structure.

In contrast to other grid layout techniques, Sca2Gri specifi-
cally targets scenarios with a significantly larger number of points
∥P∥ := ∥P∥ in relation to the number of grid cells ∥C∥ := ∥C∥, i.e.
∥P∥>> ∥C∥. It controls grid size, aspect ratio, and displacement,
producing overlap-free layouts with minimal distortions and pre-
serving distance and neighborhood relationships. Unlike approaches
that inefficiently use visual space or distort layouts, Sca2Gri ensures
that visualizations remain readable and scalable. To the best of our
knowledge, Sca2Gri is the first approach to generate overlap-free
layouts for scatterplots beyond millions of points at interactive rates.

3. Objective

Sca2Gri aims to present overlap-free glyphs for scatterplots with a
large number of points P . It considers a grid with (non-overlapping)
cells C, whereas each grid cell contains a glyph or image represent-
ing a point. We restrict ourselves to uniform grids in this work, the
extension of Sca2Gri to arbitrary grids is briefly discussed in Sec. 9.
The goal is to determine an assignment G : P → C that minimizes
the displacement when “moving” points p ∈ P to grid cells c ∈ C
(considering the Euclidean distance to the cell center). The allowed
displacement should be constrained by threshold τ, with the excep-
tion that a point p may always be assigned to the grid cell c that
it is located in. This is denoted as p ∈ χ[c] in the following, with
χ : C → P mapping cells to the points that they contain.
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(a) Scatterplot P (boxes indicate zoom-in areas z) (b) Sca2Gri grid G(P) with gx = 8 (c) Sca2Gri grid G(P) with gx = 24

(d) Sca2Gri grid G(P) with gx = 12 (e) Zoom-in birds and mammals (f) Zoom-in big cats vs. owls

(g) Zoom-in outliers (τz = 0) (h) Zoom-in outliers (τz = 0.1) (i) Zoom-in outliers (τz = 0.4)

Figure 1: Sca2Gri exploration example with the 1.2 Million images from the Imagenet dataset (please zoom in to enlarge). Starting with the
scatterplot from UMAP projection (a), it demonstrates interactive adjustment of the three Sca2Gri parameters scatterplot grid resolution
gx (b–d), scatterplot area z (e–g), and displacement τz (g–i). The colored boxes in (a) correspond to zoom-ins during the exploration from (e)
to (i). Gray points depict P , the images are shown in the cells C (size is scaled to 90% to leave boundary space), and black semitransparent
lines indicate displacement when mapping scatterplot points to cells in g–i. Parameters and timings are listed at the top of each frame.

With this, Sca2Gri needs to solve the following optimization prob-
lem, minimizing the sum of displacements when mapping points to
cells via assignment G:

min
G ∑

p∈P
∥p−G[p]∥

s.t. (∥p−G[p]∥ ≤ τ)∨ (p ∈ χ[G[p]])
(1)

Crucially, Sca2Gri targets scenarios where the number of points
∥P∥ significantly exceeds the number of cells ∥C∥ that can expres-
sively be presented with a grid (i.e., ∥P∥>> ∥C∥). This means that
generally only a subset of points ⊆ P can be assigned to grid cells
C, but also vice versa not all grid cells potentially have an associated
point due to the displacement threshold (and can be considered to
be empty from a presentation point of view).

To allow flexible (interactive) control, Sca2Gri exhibits three
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Sca2Gri Step Short Description Input Output Complexity

reduce-grid determine list / number of points contained by each grid cell P , C χ : C →P(P) O(∥P∥)
reduce-onion compute layers of equidistant neighbor cells C, τ neighborhood onionN O(∥C∥ log∥C∥)
reduce-bound identify points to keep per cell χ,N reduced points P∗ O(∥C∥2)

assign-cost compute # assignment elements e and cost matrixM : e× e P∗,C,τ cost matrixM O(∥C∥2)

assign-LA solve linear assignment problem (Jonker-Volgenant) M assignment G : P∗→C O(∥C∥3)

(∥P∥ depicts the number of points, ∥C∥ denotes the number of grid cells) O(∥P∥+∥C∥3)

reduce-grid assign-costreduce-onion reduce-bound assign-LA
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P, C

Figure 2: Sca2Gri steps to determine the assignment G of points P to grid cells C (see table (top) for step characteristics and figure (bottom)
for an illustration of the process). The grid C is created under consideration of scatterplot area z and cell size gx. reduce-grid identifies for
each point p ∈ P in which cell c of the grid C it is located (color indicates cell correspondence in the illustration). reduce-onion creates
neighborhood onion N by grouping the cell neighborhood into layers which are equidistant to the center of the origin cell and sorted in
the order of increasing distance. The maximum distance of cells that N contains is bound by displacement threshold τ. As we consider
uniform grids in this work,N only needs to be created once regardless of how many cells there are in the grid. The example above features
non-square cells (with sx > sy) and numbers 0 to 3 indicate different layers, with 0 being the respective cell itself, 1 its closest neighbors, etc.
In reduce-bound, cells iterate over N to determine an upper bound on how many of its associated points can be assigned to grid cells C.
A reduced set of points P∗ ⊆ P is created accordingly. assign-cost stores point→cell assignment cost in a quadratic cost matrixM with
e× e elements on either side (i.e,. e points and e cells), introducing virtual points and/or cells as needed for balancing (indicated via v in the
illustration). Finally, assign-LA solves the linear assignment problem withM to yield the assignment of points to grid cells G.

parameters to adapt the presentation of the grid: scatterplot area z,
horizontal grid resolution gx, and (relative) displacement τz (please
find an example demonstrating parameter changes in Fig. 1):

Scatterplot Area z :=
(

zfrom
x ,zfrom

y ,zto
x ,zto

y

)
determines the re-

gion of interest. As not all points P can be shown in a single grid
view in cells C, it is crucial to allow users to select different areas
of a scatterplot to explore. For example, starting from an overview,
different parts can be explored in detail by zooming in (e.g., by
dragging the mouse to select a rectangular area).

Grid Resolution gx specifies the horizontal resolution of the grid
in the focus area z. With this, the horizontal cell size sx is accordingly
determined by sx := (zto

x − zfrom
x )/gx. The cell size in y direction sy

is then simply computed with the aspect ratio of the glyph or image
that is to be shown: sy := sx · [glyph height]/[glyph width]. Finally,
the vertical grid resolution gy is determined via gy := ⌈zy/sy⌉.

Displacement τz determines the maximum distance of a point to
a cell (center) with which assignment is still possible. Decoupling
grid resolution gx and displacement bound τz allows for flexible
tuning of representations, with τz essentially controlling a trade-off:
larger τz means more data points can be shown (as there are generally
fewer empty cells), while lower τz yields a closer preservation of the
scatterplot structure. To be more intuitive, τz is provided in relation
to scatterplot area z such that the setting qualitatively speaking is
agnostic to changes in z. The absolute displacement value τ – as

used in Eq. 1 – is simply computed from τz by multiplying with the
horizontal extent of the scatterplot area: τ := τz · (zto

x − zfrom
x ).

For the exploration of large datasets, it is crucial that all these
parameters can be interactively controlled. Fig. 1 provides an exam-
ple of such an analysis session, it will be discussed in more detail
later in Sec. 6. To achieve the required interactive performance with
large scatterplots, Sca2Gri’s computational scaling with respect to
the number of points ∥P∥ needs to be linear. The method to achieve
this will now be described in detail in the upcoming Sec. 4.

4. Method

Sca2Gri follows a two-phase approach to exploit the structure of the
problem and achieve the objectives as outlined in Sec. 3:

reduce. Decrease the number of points from P to P∗ under consid-
eration of all three parameters. The main idea is to only keep as
many points as could theoretically be presented in the grid (i.e.,
assigned to grid cells during the assign phase). Crucially, we aim
to achieve O(∥P∗∥) = O(∥C∥) while only inducing negligible
impact on the final quality of the produced assignment (bound by
the cell size s for each point-cell pair).

assign. Map the (reduced) set of points P∗ to the cells of the grid
C under consideration of the maximum bound for displacement τ,
effectively solving Eq. 1.

The procedure will now be discussed in detail below in Sec. 4.1

© 2025 The Author(s).
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(reduce) and Sec. 4.2 (assign). Please find an overview of individual
steps and their characteristics in Fig. 2. An analysis of the resulting
total complexity of Sca2Gri is provided in Sec. 4.3.

4.1. reduce

This phase determines the reduced set of points P∗ ⊆ P which
is further considered in assign. Note that reduce can only have
an effect when not all points can be assigned to cells, i.e., when
∥P∥> ∥C∥ and/or τ ̸=∞. If this criterion is not met, Sca2Gri simply
skips this phase and runs assign with P∗ = P . reduce consists of
three individual steps that will now be discussed in detail in the
following: reduce-grid, reduce-onion, and reduce-bound.

reduce-grid

First, we identify for each point p ∈ P whether it lies within zoom
area z and, if so, in which cell c of the grid C it is located. As
we restrict ourselves to uniform grids in this work, this is simply
determined by offsetting p with the minimum domain bounds from
z, dividing by cell size s, and taking the largest integer smaller
than the result (the floor operation) in both x and y direction:(
⌊(p− zfrom

x ) · sx⌋,⌊(p− zfrom
y ) · sy⌋

)
. We compile for each cell

the list of points Pc ⊂ P that it contains: χ : C → Pc. Note that in
our implementation, we only keep a maximum of ∥χ[c]∥= ∥C∥ for
each cell c (it is not possible to eventually assign more points than
there are grid cells ∥C∥ in total).

Computational Complexity. For each individual point, its corre-
sponding grid cell can be found in constant time. Accordingly, the
computational complexity of this step is O(∥P∥).

reduce-onion

Neighborhood onion N consists of different layers that contain
relative indices to all neighbors with equal distance, whereas lay-
ers L ∈ N are sorted in the order of increasing distance. For
this, it considers the width-to-height ratio sx/sy of a cell, e.g.,
N = {{(0,0)},{(1,0),(0,−1)},{(0,1),(−1,0)}, . . .} for cells
with sx > sy. Trivially, it can be computed by sorting all possible
neighbors with respect to distance. Neighborhood onions contain
layers up to a maximum distance of τ+

∥s∥
2 .

Computational Complexity. As we consider a uniform grid in
this work, the onion only needs to be determined once for the whole
grid. Accordingly, the computational complexity is O(∥C∥ log∥C∥).

reduce-bound

The core idea of this step is that for each set of points χ[c] associated
with a cell c we determine a theoretical upper bound µ[c] regarding
how many of these points can maximally be assigned to grid cells
C. This allows to substantially reduce the set of points from P
to P∗ ⊆ P such that ∥P∗∥ << ∥P∥ when the number of cells is
significantly smaller than the number of points: ∥C∥<< ∥P∥.

In our method to determine P∗ (Alg. 1), we loop over the layers
L ∈N of the neighborhood onion from reduce-onion (line 4,line 5)
and all cells in our current working set C′ (line 6). C′ initially
contains all cells of the grid (line 1) and through the course of the

Input: points per cell χ (reduce-grid)
Input: neighborhood onionN (reduce-onion)
Result: reduced set of points P∗

1 C′←C ; // working set of considered cells
2 σ[C]←∞ ; // layer index indicating when a cell is visited
3 µ[C]← 0 ; // number of points to keep per cell
4 forall l ∈ 1 . . .∥N |∥ do
5 L←N [l];
6 forall c ∈ C′ do
7 T c

l ←{c∆ := (c+∆) ∀∆ ∈ L | c∆ ∈ C, l ≤ σ[c∆]}
8 r← µ[c]+∥T c

l ∥ // # points required from c
9 if ∥χ[c]∥ ≥ r then

10 σ[T c
l ]← l ; // mark visited cells with layer index

11 µ[c]← r ; // r is new upper bound for c
12 else
13 µ[c]←∥χ[c]∥ ; // c keeps all associated points
14 if ∥χ[c]∥ ≤ r then
15 C′←C′−{c} ; // omit cell in subsequent layers

// output combined subset of µ[c] points across cells c ∈ C
16 return P∗ := ∪c∈C (P

∗
c with P∗

c ⊆ χ[c],∥P∗
c ∥= µ[c]);

Algorithm 1: reduce-bound. Determine the reduced set of points
P∗ based on the number of points χ[c] that can maximally be
assigned to the grid across all cells c ∈ C.

algorithm we keep track of which cells still need to be considered in
the subsequent iteration.

For each c ∈C′, the set of corresponding cells in the current layer
T c

l ⊆ C is determined via (c∆ := c+∆) ∀∆ ∈ L) and two constraints.
First, the cells should be part of the grid (c∆ ∈ C). Second, the cells
must not have been visited in an earlier layer (l ≤ σ[c∆])), where l
depicts the index of the layer and σ marks the index when a cell has
been visited first (initialized to infinity in line 2). Note that a cell c∆

can be considered by multiple cells c in the same layer iteration l.

∥T c
l ∥ in combination with the number of points accounted for

from prior layers µ[c] determines the total number of points r from
c that could potentially be assigned to cells up until the current
layer (line 8). If the number of points χn(c) associated with cell c
is sufficient to cover r (line 9), we mark the cells T c

l as visited with
layer index l (line 10) and increase the upper bound µ[c] accordingly
(line 11). Otherwise, the cell keeps all associated points (line 13).
For the sake of efficiency, if all associated points are now accounted
for after processing this layer (line 14), the cell c is removed from
the working set for subsequent iterations (line 15).

Finally, after completing all layers, we compile the set of reduced
points P∗ by randomly choosing a subset of size µ[c] (the upper
bound) from χ[c] (the points associated with c) for each cell c
(line 16).

Computational Complexity. The complexity is O(∥C∥2) as each
grid cell potentially visits each other grid cell. We can further de-
termine an upper bound of the total number of reduced points
∥P∗∥= ∑c∈C µ[c] as follows. In the uniform grid that we consider,
there are maximally four cells that can have the same distance to any
given cell c∈ C. This means that each cell can maximally be encoun-
tered by four other cells with the same layer index l. Accordingly,
∥P∗∥ := ∥P∗∥ ≤ 4∥C∥, and with this O(∥P∗∥) = O(∥C∥).
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4.2. assign

We now solve the optimization problem from Eq. 1, assigning the
reduced point set P∗ to grid cells C. This is structured into two
individual steps: assign-cost and assign-LA.

assign-cost

To map points to cells in Sca2Gri, we set up a balanced assignment
problem with e elements on either side (points or cells), introducing
virtual points or cells as needed. e is determined such that it is as
small as possible (to minimize computational cost in the final step
assign-LA), while still allowing to meet displacement constraint τ:

e =

{
max(∥P∗∥,∥C∥), τ =∞
∥P∗∥+∥C∥−n⊠, τ ̸=∞

(2)

In the case of τ =∞ (unlimited displacement), e is simply the
maximum of the number of reduced points ∥P∗∥ and cells ∥C∥,
whereas the side with fewer elements is filled with virtual elements
to balance the problem. This means that with ∥P∗∥ > ∥C∥ (more
points than cells), all cells will be assigned to points (∥P∥= e), and
the rest to virtual points. Vice versa, when ∥C∥> ∥P∗∥ (more cells
than points), all points are assigned to cells, and ∥P∥= e.

τ ̸=∞ induces an assignment constraint which implies that both
points and cells potentially need to be assigned to virtual elements
(not all points can be matched with all cells and vice versa). On
the extreme, if it would be possible that no point-cell pairs can
meet this constraint, it would follow that e = ∥P∗∥+ ∥C∥ (i.e.,
∥P∗∥ virtual cells and ∥C∥ virtual points would need to be added).
However, according to Eq. 1, in Sca2Gri it should always be possible
to map a point p to its associated cell χ[p], regardless of τ. This
allows to reduce e by the number of cells associated with at least
one point n⊠(:= ∑c∈C (∥χ[c]∥> 0)), utilizing that there will be at
least as many valid assignment pairs for which no virtual elements
are required. This means that eventually e−∥C∥ virtual cells and
e−∥P∗∥ virtual points are added.

Finally, we compute the e× e cost matrixM:

M(p,c) =


τ+ ϵ, p or c are virtual
min(∥p− c∥,τ), p ∈ χ[c]
∥p− c∥ else

(3)

As depicted in Eq. 1, the cost of assigning a point p ∈ P∗ to a cell
in c ∈ C is their Euclidean distance (with respect to the center of
a cell c). To reflect that each cell that contains a point should also
represent one, we set the assignment cost to min(τ− ϵ,∥p− c∥) for
the cell c a point p is associated with. The cost when either a virtual
point or cell is involved is set to τ. Note that when τ =∞, a finite
value larger than the maximum distance between any non-virtual
point-cell pairs is used in the implementation.

Computational Complexity. Only distances between real (non-
virtual) cells and points need to be computed. With this, the
computational complexity for determining the cost matrix M is
O(∥P∗∥ · ∥C∥= O(∥C∥2) (with O(∥P∗∥) = O(∥C∥), see above).

assign-LA

Sca2Gri employs a modified Jonker-Volgenant algorithm with no
initialization [Cro16]. It optimally solves the linear assignment

problem to map P∗ to C with the e×e cost matrix computed during
assign-cost to yield the assignment of points to grid cells G.

Computational Complexity. The Jonker-Volgenant has cubic
complexity regarding the number of elements (i.e., O(e3) in our
case). As ∥P∗∥ is in O(∥C∥) (see Sec. 4.1), also e is in O(∥C∥).
Accordingly, this step exhibits an overall complexity of O(∥C∥3).

4.3. Computational Complexity

When considering all individual steps, the total complexity yields

O(∥P∥[reduce-grid] +∥C∥ log∥C∥[reduce-onion]

+∥C∥2[reduce-bound] +∥P∥[reduce-select] (4)

+∥C∥2[assign-cost] +∥C∥3[assign-LA])

= O(∥P∥+∥C∥3).

This means that the computational complexity of Sca2Gri is linear
with respect to the number of points ∥P∥ in the scatterplot, and
cubic regarding the number of cells ∥C∥. Linear scalability with
∥P∥ is crucial for large datasets including many thousands, millions,
or even more members, while ∥C∥ is strictly limited to several
hundreds at most in practice—the glyphs presented within the cells
otherwise become too numerous and too small. Note that when
omitting reduce and with this P∗ = P , the total complexity would
be O(∥P∥3 +∥C∥3), i.e., also cubic in the in the number of points
— as all points need to be considered in assign-LA — which quickly
becomes prohibitive for large sets of points (> thousands).

5. Evaluation Setup

The implementation of Sca2Gri used in the following evaluation
employs Python3.12 and is heavily based on NumPy [HMvdW∗20],
SciPy [VGO∗20], and Numba [LPS15]. All measurements reported
throughout this paper stem from running Sca2Gri on a single CPU
core of Mac Mini M4 and 16 GB memory. The only exception is
reduce-grid which is implemented using Apple Metal and runs in
parallel on the M4 GPU.

Both synthetic and real-world data is considered in our evaluation.
Without restricting generality, we normalize the scatterplots such
that the spatial extent in x direction is in the [0,1] range.

Real-World Data

ImageNet. We consider the ImageNet-1K dataset, primarily used
for image classification tasks in computer vision. It has been exten-
sively used for benchmarking image classification models and had a
critical role in the development of deep learning architectures like
AlexNet [KSH17], VGG [LD15], ResNet [HZRS16], and others. In
our evaluation, we consider the 1.2 million training images resized to
64×64, with feature vectors extracted via the pre-trained ResNet18
model. These features are then projected using UMAP [MHM20].

Droplet experiments. This dataset contains an experimental pa-
rameter study that was conducted to analyze the impact of a droplet
hitting a thin fluid film [GCM∗16]. It consists of a total of 863610
experimental images at a resolution of 430px× 320px. Here, we
first extract perceptual hashes via pHash [Zau10] before running
UMAP [MHM20] projection.
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(a) Scatterplot P (boxes: zoom-ins) (b) Sca2Gri grid G(P) (c) Zoom-in z into area with crowns (d) Show more images via gx = 24

(e) Decrease τz to reflect P structure (f) Focus solid crowns & decrease gx (g) Obtain further details by zooming z (h) Increase gx for P structure

Figure 3: Sca2Gri exploration example with the 863610 images from the Droplet dataset. (a) presents the scatterplot from feature extraction
via perceptual hashing and UMAP projection. Akin to Fig. 1, the colored boxes correspond to zoom-ins during the exploration (b-h). Gray
points depict scatterplot data directly, the images are presented in the grid cells (size is scaled to 80%), and black semitransparent lines denote
point-to-cell mapping displacement (d, e & h). Parameters and timings are given at the top of each frame. The data is explored via interactive
adjustment of the three Sca2Gri parameters scatterplot area z, grid resolution gx, and displacement τz (updates happen at interactive rates).

Synthetic Data

For generating synthetic data, we follow a procedure akin to Hilasaca
et al. [HMJE∗24]. We generate ∥P∥ 2D points which are distributed
according to a mixture of Gaussians with each Gaussian featuring
its own mean and covariance matrix. The distribution of generated
points for each Gaussian can be described as follows:

pi ∼
K

∑
j=1

∥P∥
K
·D(µ j,Σ j), for i = 1, . . . ,∥P∥ (5)

where pi is the i-th 2D point (pi ∈ P). Here, K is the number of
Gaussian components (randomly sampled with K ∈ {1,2,3,4,5}),
whereas each Gaussian D generates ∥P∥/K points. µ j is the mean
of the j-th Gaussian, sampled from a uniform distribution over the
range [0,W ]× [0,H] (where W = 1 and H is randomly sampled in
the range [0.25,1]). This means that we vary the width-to-height
ratio of the scatterplot domain between 1 and 4. Σ j = diag(σ2

x, j,σ
2
y, j)

is the diagonal covariance matrix of the j-th Gaussian, with σ
2
x, j and

σ
2
y, j sampled randomly.

6. Interactive Exploration

We now exemplify how Sca2Gri can be used for interactive explo-
ration of large data by means of the two real-word datasets (Sec. 5):
ImageNet and droplet experiments.

ImageNet

Fig. 1 presents an example exploration of the 1.2 million images in
the ImageNet-1k data, showcasing the interactive adjustment of the

three Sca2Gri parameters scatterplot area z, grid resolution gx, and
displacement τ. Crucially, all parameter changes are incorporated
at highly interactive rates. (a) provides the points of the scatterplot,
whereas the colored boxes correspond to zoom-ins during the ex-
ploration. In (b–d), we gain an overview on the full data at different
grid resolutions gx. We then aim to have a closer look at an area in
the lower right encompassing birds and mammals (orange box), and
for this select a zoom box z to yield the new grid in (e). We can see
that birds and big cats (especially leopards and tigers) are located
closely in the plot, interestingly indicating that similar embeddings
are generated for them by ImageNet. We further narrow z for more
detailed investigation (blue box in a) and observe visually similar
occurrences of snow leopards and owls in particular (f). We discover
that they exhibit similarity with respect to facial structures as well
as patterns in fur and feathers, respectively.

Finally, we zoom into a different scatterplot area and focus on
an outlier structure (red box in a). We observe that the outliers
corresponds to series of images taken from different people in front
of the same (blueish) background, whereas the other images in the
vicinity reflect different motives, mostly incorporating humans (g).
From (g) to (i), we increase the displacement τz — as reflected by
the displacement indicators — to see a larger breadth of images at
the cost of increasingly losing the original scatterplot structure.

Droplet experiments

Fig. 3 shows the results of an experimental study on the behavior
of droplets falling on a thin film of liquid. In the example explo-
ration, all parameters are adapted (z,τz,gx), and changes are quickly
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Figure 4: Scaling properties of Sca2Gri from ∥P∥= 100 to ∥P∥= 100000000(100M). All timings are provided in seconds.

reflected. (a, b) We start from an overview on the full droplet experi-
ment data that shows the variety of different states in the ensemble.
(c) We then focus and zoom into an area that exhibits crown struc-
tures of different shapes for closer investigation. (d) To get a better
overview of the variety of results in the area, we decrease gx (e)
as well as the maximum resolution threshold τz such that the loca-
tions of the shown experimental images correspond more closely
to their original location in the scatterplot P . (f) We then further
zoom into solid (thick) crown structures and decrease gx to see the
images in more detail. (g) We continue by selecting a subarea that
lies at the border of different behaviors depicted. (h) Finally, we
increase the grid resolution gx again to see clear separations of clus-
ters of different structures. This view shows that there are several
clearly distinguishable local clusters of different experimental im-
ages with very close corresponding point positions P . Here, both
the local structure of the scatterplot in this area can be preserved
and also the various images belonging to individual clusters shown
by accordingly choosing the displacement threshold τz.

7. Scaling and Parameter Study

We now discuss the results of our scaling and parameter study con-
ducted with 100 synthetically generated scatterplots. In particular,
we investigate the performance in ∥P∥ >> ∥C∥ scenarios which
are the focus of this work.

Scaling

We now consider a scaling study for an increasing numbers of
points from ∥P∥= 100 to ∥P∥= 100000000 (100M) (in practical
scenarios the number of cells ∥C∥ is bound to thousands at most
due to limited visual scalability). The results presented in Fig. 4
show that the (relative) computational footprint of different steps
varies depending on ∥P∥. For ∥P∥ ≤ 10M, assign-LA is clearly
the most impactful, with reduce-grid starting to have a noticeable
impact for ∥P∥= 10M and consuming the largest part of the total
compute time for ∥P∥= 100M. These two steps also determine the
theoretical computational complexity as discussed in Eq. 4.

For ∥P∥ ∈ [10K,10M], the total compute time remains largely
constant. Looking at the two main cost factors, we attribute this (i) to
the GPU implementation of reduce-grid which can rapidly process

even large point numbers in parallel, and (ii) the fact that the cost
of assign-LA is mainly driven by ∥C∥ which remains unchanged.
Crucially, while the total time for ∥P∥= 100M noticeably increases,
the performance is still sufficient for interactive exploration.

Parameter Impact

Fig. 5 presents the impact of parameters gx and τ with ∥P∥= 1M.
Fig. 5a shows that larger gx in combination with a more relaxed
(larger) displacement threshold τ induces higher cost for (i) reduce-
bound and (ii) assign-LA. This is due to the fact that both settings
have an impact on (i) the number of considered onion layers ∥N∥
and (ii) the number of elements e to assign during assign-LA (see
Eq. 2). Note that larger τ means that there is more flexibility in
distributing points, with this also increasing the upper bound de-
termined in reduce-bound and with this eventually the number of
reduced points ∥P∗∥. Note that complexity-wise, as discussed in
Sec. 4.2, O(∥P∗∥) = O(∥C∥) regardless of the setting for τ.

The grids in Fig. 5b clearly show that with increasing τ naturally
more points can be represented in cells at the cost of more signifi-
cant displacement (visually indicated by longer gray lines between
original point position and cell centers). Similarly, while lower gx
and larger cells sizes s allow to reflect each point in more detail via
images of glyphs, it is also detrimental to maintaining structure.

In general, gx and τ directly influence the fundamental tradeoffs
between (i) cell size versus the number of cells (for a fixed domain
size) and (ii) the number of represented points versus point displace-
ment. The fact that there is no clear optimal setting and different
configurations might be favorable in different phases of the analysis
underlines the importance of interactive control, especially for the
analysis of scatterplots involving a large number of points.

8. Comparison

While there is no prior technique that accomplishes Sca2Gri’s ob-
jectives, in this section we aim to put it into context with two recent
related methods, namely DGrid and Hagrid, regarding computa-
tional performance and quality (Fig. 6). DGrid in particular showed
superior performance to other methods in a recent study [HMJE∗24].
We employ synthetic scatterplot data (Sec. 5) and use τ =∞ for
Sca2Gri, i.e, no restrictions are placed on displacement.
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(b) Grids with gray lines between points p and assigned cells G[p].

Figure 5: Impact of grid size gx and displacement τ on (a) performance (box colors akin to Fig. 4: ■ total, ■ reduce-grid,■ reduce-
onion,■ reduce-bound,■ assign-cost,■ assign-LA) and assignment (b) at the example of synthetic data with ∥P∥ =one million points. In
(b), cells are colored with respect to the Gaussian that their assigned point stems from. The opacity of the color of each cell c ∈ C is further
modulated to reflect how many points χn[c] are associated with it: α(c) = 0.2+0.8 χn[c]

maxc′∈C χn[c′]
.

Performance Scaling

Fig. 6a compares the performance scaling of the different methods
for increasing numbers of points ∥P∥. For Hagrid and DGrid, the
grid size is chosen such that the points can be accommodated by the
grid as required by these methods, Sca2Gri employs a fixed gx = 32.
For low point counts ≤ 10000 points both Hagrid and DGrid are
faster than Sca2Gri. This can mainly be attributed to the recursive
bijection approach for grid assignment and the use of space-filling
curves introduced by DGrid and Hagrid, respectively, which are
both computationally faster than the Jonker-Volgenant algorithm we
use in Sca2Gri for assign-LA. However, crucially, while Sca2Gri’s
timings remain largely constant below 0.1 s up until m = 10000000
points, the other method’s timings rapidly increase beyond 100s for
100000 points already.

Quality Metrics

We further evaluate Sca2Gri regarding how well it performs re-
garding performance metrics in classic scenarios where ∥P∥ < C
(Fig. 6b). Note that in such cases, Sca2Gri skips the reduce phase
as discussed in Sec. 4 (due to the fact that no point reduction is
possible, yielding P∗ = P). We create 1000 synthetic scatterplots
with ∥P∥ ∈ {500, . . . ,1000}. In addition, also akin to Hilasaca et al.
[HMJE∗24], we randomly choose a density factor d ∈{3,5,7,9,11}
to control the considered cell size s =

√
(W ·H)/(d · ∥P∥) (with W

and H depicting width and height of the scatterplot, respectively).

We consider six comparison metrics as used by Hilasaca et
al. [HMJE∗24] (from the seven originally employed metrics we omit
overlap as there is none by design in DGrid, Hagrid, or Sca2Gri).
Note that for DGrid and Hagrid, the numbers in Fig. 6b generally
reflect the results reported by Hilasaca et al. [HMJE∗24] (Fig. 6).

stress ∈ [0,∞) indicates distance preservation (↓ is better):

stress =

√√√√∑
∥
i< j P∥(||pi − p j||− ||G[pi]−G[p j]||)2

∑
∥
i< j P∥||pi − p j||2

There is only minimal stress close to zero for both Sca2Gri and
DGrid, while Hagrid preserves distances less accurately.

trustworthiness ∈ [0,1] (↑ is better) quantifies ranking relationships
of neighboring points:

trustworthiness = 1−
2

∥P∥K(2∥P∥−3K −1)

∥

∑
i
P∥ ∑

j∈U i
k

(r(i, j)−K).

Here, U i
K is the set of points that is in the neighborhood of size K of

G[pi]∈ C but not in the neighborhood of size K of pi ∈P , and r(i, j)
denoes the rank of point p j in the ordering according to the distance
from pi in the original scatterplot (we use K = 8). Hagrid scores
still high values around 0.88, whereas close-to-optimal results ≈ 1
are achieved by both Sca2Gri and DGrid.

ordering ∈ [0,1] indicates order preservation (↓ is better):

ordering =
∑
∥
i, j P∥

(
xi > x j ∧G[xi] < G[x j]+ yi > y j ∧G[yi] < y′j

)
∥P∥(∥P∥−1)

,

with xi and yi denoting the x and y coordinates of pi (likewise
for respective cells). Sca2Gri and DGrid demonstrate good order
preservation here with values which are close to zero, while Hagrid
exhibits more significant deviation.

aspect ratio ∈ [1,∞) captures the change in ratio (↓ is better):

aspect ratio = max
(

W ′×H
H′×W

,
H′×W
W ′×H

)
.

W and H denote width and height of the scatterplot, W ′ and H′ the
grid extents. The values for Hagrid indicate a noticeable deviation

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



10 of 12 S. Frey / Sca2Gri: Scalable Gridified Scatterplots

102 103 104 105 106 107

Number of Points (log scale)

10 2

10 1

100

101

102

103

Ti
m

in
g 

(s
ec

on
ds

, l
og

 sc
al

e)

Hagrid
DGrid
Sca2Gri

(a) Increasing number of points ∥P∥ (gx = 32 and τ = for Sca2Gri)

Sca2Gri DGrid HaGrid
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Va
lu

e 
(

 b
et

te
r)

stress

Sca2Gri DGrid HaGrid

0.80

0.85

0.90

0.95

1.00

Va
lu

e

trustworthiness

Sca2Gri DGrid HaGrid
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Va
lu

e 
(

 b
et

te
r)

ordering

Sca2Gri DGrid HaGrid
1.0

1.2

1.4

1.6

1.8

Va
lu

e 
(

 b
et

te
r)

aspect ratio

Sca2Gri DGrid HaGrid
0.0

0.1

0.2

0.3

0.4

Va
lu

e 
(

 b
et

te
r)

displacement

Sca2Gri DGrid HaGrid

1.0

1.2

1.4

1.6

1.8

Va
lu

e

spread

(b) Various metrics used by Hilasaca et al. [HMJE∗24]

Figure 6: Comparison of Sca2Gri against DGrid [HMJE∗24] and Hagrid [CMC∗22]. (a) Sca2Gri crucially scales to ∥P∥> 1M in contrast
to other methods, (b) while also achieving competetitve quality according to several metrics in O(∥P∥) = O(∥C∥) scenarios.

of the aspect ratio. In comparison, Sca2Gri and DGrid only cause
minimal distortion in this regard.

displacement ∈ [0,∞) quantifies the extent of point position
changes when assigning them to the grid (↓ is better):

displacement =
1

∥P∥
√

W ′ ∗H′

∥

∑
i
P∥||pi −G[pi]||.

The assignment schemes of Sca2Gri and DGrid only cause minimal
point displacement, while this value is significantly larger for Hagrid.

spread depicts the resulting grid size relative to the original extent:

spread =
W ′×H′

W ×H

The generated grid size approximately equals the original extent
for Sca2Gri and DGrid, and is slightly larger for Hagrid.

Overall, it can be seen that Sca2Gri performs similarly to DGrid
overall and even better than Hagrid with respect to some measures.
In Hilasaca et al. [HMJE∗24], the authors compare against seven
state-of-the-art techniques in total (besides Hagrid [CMC∗22] also
ReArrange [GPNB17], PFS’ [MELS95, HIMF98], VPSC, RWordle-
L / C [SSS∗12], ProjSnippet [GRP∗14], and PRISM [GH10]). They
find that "DGrid presents the best trade-off regarding multiple as-
pects while producing low distortions and bounding the dimensions
of the created layouts, consistently resulting in visual representa-
tions with readable glyphs" (p. 12), and further showed favorable
results in a user study with 51 participants. With this, we conclude
that Sca2Gri is not only the first technique for overlap removal in
scatterplots that computationally scales to millions of points at inter-
active rates, but that it also delivers competitive performance in the
classically considered scenarios in which ∥C∥ ≥ ∥P∥.

9. Conclusion

Sca2Gri provides a scalable solution for removing overlaps when
representing points in scatterplots as glyphs, with a particular focus
on dealing with large numbers of points that exceed traditional

visual and computational limitations. Specifically, it is designed for
cases where the number of points significantly exceeds the amount
of glyphs or images that can be effectively displayed—the glyphs
would simply be too numerous and their footprint too small when
showing all of them. Accounting for this, Sca2Gri displays only a
subset of glyphs, and enables flexible user control of (i) cell size,
(ii) maximum point-to-cell mapping displacement, and (iii) the focus
area in the scatterplot. Crucially, Sca2Gri remains computationally
efficient with linear scalability regarding the number of points, and
to the best of our knowledge it is the first grid-based method to
achieve interactive rates for scatterplots beyond millions of points
with overlap-free images.

The paper opens up several directions for future work. Most
prominently, our current Python implementation runs all steps be-
sides reduce-grid on a single CPU core only. Other steps such as
reduce-bound could also be parallelized and utilize multicore CPUs
or GPUs for significant speedups. assign-LA employs a modified
Jonker-Volgenant algorithm with no initialization [Cro16]. It opti-
mally solves the linear assignment problem, but faster solutions like
Vogel’s approximations or the auction algorithm [Ber79] could be
considered as well. We anticipate that further improvements in the
implementation like these together with out-of-core extensions will
potentially allow Sca2Gri to scale even further to billions of points
while maintaining interactive performance. In addition, we restrict
ourselves to uniform grids in this work, but with minor adjustments
in the methods to assign points to cells (reduce-grid) and neigh-
borhood consideration (reduce-onion) also other (potentially un-
structured) grids could be handled, e.g. hexagonal grids [CMC∗22].
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