
SIMT Microscheduling: Reducing Thread Stalling
in Divergent Iterative Algorithms

Steffen Frey, Guido Reina and Thomas Ertl
Visualization Research Center, University of Stuttgart (VISUS)

Allmandring 19, 70197 Stuttgart, Germany
{steffen.frey|guido.reina|thomas.ertl}@visus.uni-stuttgart.de

Abstract

The global scheduler of a current GPU distributes thread
blocks to symmetric multiprocessors (SM), which sched-
ule threads for execution with the granularity of a warp.
Threads in a warp execute the same code path in lockstep,
which potentially leads to a large amount of wasted cycles
for divergent control flow. In order to overcome this gen-
eral issue of SIMT architectures, we propose techniques to
relax divergence on the fly within a computation kernel in
order to achieve a much higher total utilization of process-
ing cores. We propose techniques for branch and loop di-
vergence (which may also be combined) switching to suit-
able tasks during a GPU kernel run every time divergence
occurs. Our newly introduced techniques can easily be ap-
plied to arbitrary iterative algorithms and we evaluate the
performance and effectiveness of our approach exemplarily
via synthetic and real world applications.

1 Introduction

Current GPUs feature multiprocessors with SIMT ar-
chitecture which create, schedule, and execute threads in
groups called warps. Threads of a warp execute the same
instructions (lockstep), but they have their own register state
and masking is employed in order to allow divergent control
flow. Thus, full efficiency is only realized when all threads
of a warp take the same execution path. Three types of is-
sues can be distinguished that lead to wasted computation
cycles on GPUs:

Memory Divergence A subset of threads of a warp per-
form costly memory accesses and stall, forcing the
other threads to idle.

Termination Divergence Terminated threads waste com-
pute cycles until all threads of their warp are finished
with their computation steps (Fig. 1(a)).

Iteration

Thread 0

Thread 1

Thread 2

Thread 3
 ...

Warp # Iterations Executed: 36 # Iterations Wasted: 28∑ Iterations: 64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Termination Divergence: All threads run until every thread of the warp
is finished with all its computation steps.

Branch
Condition
Thread 0

Thread 1

Thread 2

Thread 3
 ...

Warp # Blocks Executed: 52 # Blocks Masked: 20∑ Code Blocks: 64

0 1 2 3 4 5 6 7
T F T F T F T F T F T F T F T F

(b) Branch Divergence: If at least one threads needs to execute a branch,
all threads need to step through it.

Figure 1. Threads of a warp are executed in lock-
step, which results in termination divergence 1(a) and
branch divergence 1(b).

Branch Divergence A warp serially executes each branch
path taken, masking threads that are not on that path
(Fig. 1(b)).

In this paper, we aim to eliminate the wasted cycles caused
by branch and termination divergence. We distinguish be-
tween the two because different approaches need to be taken
to account for the occurring issues.

The terms task and task context are fundamental in the
discussion of our approaches in the following. A task
uniquely identifies a job, thus denoting the information nec-
essary for initialization. This is typically determined from
the thread id in parallel environments. Our approaches for
termination divergence are based on threads fetching new
tasks upon finishing their old task. A task context con-
tains the complete description of the state of a computation,

1

which is necessary for storing and resuming jobs at certain
positions in the code. Branch Divergence is tackled by uti-
lizing the same condition for all threads (i.e. all threads take
the same path) and by allowing threads to switch to a fitting
task context on the fly to minimize wasted clock cycles.

In this work, we assume that tasks are independent. Con-
sidering task dependencies would basically be possible with
our technique with a few extensions, but remains for fu-
ture work. We will use the CUDA terminology (NVIDIA
2011) in the following: global memory denotes graphics
memory, shared memory is on-chip memory and the term
thread block specifies groups of warps which can exchange
data using shared memory. Note that the warp size can vary
with the employed hardware architecture and without loss
of generality we assume it to be 32 in the following as it is
the case for NVIDIA GPUs.

2 Related Work

A technique called Persistent Threads dealing with
strongly varying iteration counts has been introduced by
(Aila and Laine 2009) in the context of ray tracing. They
launch just enough threads to occupy the hardware and al-
low thread blocks to fetch new tasks from a task pool in
global memory. A modification of Persistent Threads to
fetch tasks with thread granularity is also suggested briefly
to improve the handling of termination divergence, but
the authors note that it did not prove to be beneficial in
their scenario. (Tzeng et al. 2010) also employ persistent
threads to address irregular parallel work in their GPU task
management system. In contrast to persistent threads that
only balance workload between warps, we additionally bal-
ance workload between threads of a warp. (Novák et al.
2010) propose an application-specific strategy that tackles
the problem of terminated rays leaving threads in an idle
state in a GPU-based path tracer by dynamically generating
new rays that result in improved image quality and higher
ray throughput.

Moreover, several generic software approaches targeting
branch divergence have been proposed. (Han and Abdelrah-
man 2011) target the problem of divergent branches within
loops and propose a software solution that only executes
one branch per loop iteration, proposing different strategies
for choosing and switching the active branch. (Zhang et al.
2010) handle conditional branches by runtime data remap-
ping between threads using a CPU-GPU pipelining scheme.
Besides branches within loops, their approach can also han-
dle differing loop iterations counts. However, in contrast
to our purely GPU-based technique, the iteration counts
need to be known beforehand and several kernel calls are
required.

Another line of research concerns itself with finding
hardware solutions for the divergence problem. (Aila and

Karras 2010) focus on handling incoherent rays efficiently.
(Meng et al. 2010) tackle cache-hit-induced divergence in
memory access latency by utilizing several independent
scheduling entities that allow divergent branch paths to in-
terleave their execution. (Fung et al. 2007) dynamically re-
group threads into new warps on the fly following the oc-
currence of a divergent branch, which is in principle similar
to our branch divergence resolving technique. Other ap-
proaches for branch divergence include compiler-generated
priority (Lorie and Strong 1984), hardware stacks (Woop
et al. 2005), task serialization (Moy and Lindholm 2005),
regrouping (Cervini 2005) and micro-kernels (Steffen and
Zambreno 2010).

3 Tackling Branch Divergence: Task Context
Switching

The basic idea to avoid branch divergence and the result-
ing serialization of execution paths is to choose only one
(active) branch for execution and subsequently switching
task contexts such that preferably all threads are active (i.e.
no clock cycles are wasted) during the execution of that
branch (Fig. 2). The active branch is determinined by the
largest amount of task contexts that need to execute either
of the branches (similar to (Han and Abdelrahman 2011)).
Subsequently, we increase this amount by swapping task
contexts. Branches which we apply our technique to are
denoted as managed branches in the following. We limit
ourselves to if-then-else statements in the following discus-
sion without loss of generality.

3.1 Task Contexts

Task contexts can be attached to and detached from
threads whereas exactly one task context is active for a
thread at any time. Task contexts that are currently not at-
tached are shared amongst threads of a warp through the
task context pool residing in shared memory. The branch
map contains a list of references to the task context pool for
each managed branch and each possible condition leading
to a different branch there (typically true and false for an
if -statement). The branch map is used when switching task
contexts to provide the information which contexts can be
loaded that fit the upcoming branch path.

Besides the task-specific information a task context con-
tains, it also features an integer giving information about
the current state of the context (0: Active; 1-254: Tem-
porarily invalidated before a managed branch with the re-
spective number; 255: Permanently invalidated). Task con-
texts are invalidated temporarily if the branch path it ac-
tually needs to execute does not match with the executed
branch path. Temporarily invalidated task contexts are not

2

Computation Loop

Task Fetch LoopComputation Loop

Task SetupInitialization

Initialization

Iteration Step Write Result

Iteration Step

Fetch
Control

Write ResultTask Fetch +
Task Setup

Task Context Switching

Ordinary Iteration Step

ComputeCondition Check True Branch False BranchCompute

Compute Branch Voting
Context Switch

Context Check

Context Check

True Branch

False Branch

Compute Branch Voting
Context Switch

Condition Check

......

Figure 2. The basic kernel structure of an ordinary iterative application (top left) and a generic iteration step (top
right).(Bottom left) and (bottom right) show our (simplified) modified versions tackling termination divergence and
branch divergence respectively.

allowed to vote on any upcoming managed branches un-
til the initially diverging branch is reached again in order
not to corrupt code semantics. Task contexts are invalidated
permanently when the respective task is completed. A cer-
tain number of task contexts (typically two to four times the
warp size) is initialized at the very start of a kernel with
distinct tasks (similar to the local task fetching strategy dis-
cussed int Sec. 4.2).

3.2 Task Context Switching

In order to determine the branch path with the highest
saturation, votes on the upcoming branch consider both cur-
rently attached and detached task contexts. Threads not
agreeing with the upcoming branch path attempt to switch
their current task context with one that fits the upcoming
path. The references to these detached task contexts are
looked up from the branch map. Whether a task context for
a certain thread is available (and which one) is determined
by a continuous load offset that is unique to any loading
thread and starts from zero. The load offset is determined
efficiently from bit masks involved in the voting process
(refer to Listing 1 for details). If the load offset exceeds
the amount of detached task contexts available for the up-
coming branch, the thread cannot switch its context and the
current context is temporarily invalidated until this managed
branch is reached the next time. A distinct store offset needs
to be determined for storing a task context as threads with
permanently invalidated task contexts only load but do not
store contexts (i.e., permanently invalidated task contexts
are discarded). The kernel is exited when there are no more
contexts referenced in the branch map and all attached con-
texts are permanently invalid.

3.3 Deferred Context Switching

In cases in which a single iteration step is cheap, the
task context switching procedure might introduce signifi-

none local global hybrid persistent
collaboration thread block thread warp block
atomics none shared global both global
coherency high high low medium high
grid size task task gpu gpu gpu

Table 1. Feature overview of our task fetching strate-
gies and others.

cant overhead. Deferred context switching can circumvent
this issue by carrying out the task switching procedure ev-
ery nth iteration only and using a pre-defined voting out-
come otherwise. Task contexts not complying with the pre-
defined outcome are temporarily invalidated. The default
vote and the n need to be adapted by the programmer to the
problem at hand.

4 Tackling Termination Divergence: Work
Distribution Approaches

Our approach to alleviate termination divergence is to
fetch new tasks for threads finished with their old ones.

4.1 Task Pools

Tasks are fetched from task pools which are organized
hierarchically and can be distinguished in terms of the group
of threads which have collaborative access to it. All threads
have access to the Global Task Pool (in global memory),
while only threads of the same thread block or warp (de-
pending on the technique) have access to the same Local
Task Pool (in shared memory). The Private Task Pool (in
register space) may be used only by one thread. Since tasks
are embodied by monotonically increasing, continuous in-
tegers, all task pools are represented by two counters, one
for the current task and one for the last available task. Tasks
are cached from the global task pool to the local or the pri-
vate task pool in chunks to reduce costly global memory

3

accesses. The amount of tasks fetched from a higher level
task pool at a time is controlled by the user-defined chunk
size parameter.

While tasks from global task pools are fetched using
atomic additions in global memory, local task pools can ei-
ther be accessed using atomic additions in shared memory
or a combination of ballot and popc ((NVIDIA 2011) for
details on these functions, we used the latter implementa-
tion in the results).

4.2 Task Fetching

We introduce three basic work distribution techniques
(Local, Global and Hybrid), which can be distinguished by
the employed task pool hierarchy (Fig. 4). The distribution
of tasks logged from an actual run can be seen in Fig. 3 and
characteristics of different work distribution techniques are
summarized in Table 1.

Local

The local work acquisition strategy only uses local task
pools (Fig. 4 left) with one being assigned to each thread
block. Task pools are statically initialized before device
kernel invocation with #chunk size tasks and no transfer of
tasks from or to other task pools is executed. As the local
task pool only contains a small subset of all tasks, high di-
vergence cannot be cushioned as smoothly as with a global
pool. However, task fetching is cheap as no operations on
global memory are required. The amount of started thread
blocks is determined by the total amount of tasks divided by
the chunk size.

Global

The global task fetching strategy uses one global task pool
(containing all tasks) and one private task pool per thread
(Fig. 4 middle). When its private task pool is empty (Lo-
cality Check), a thread attempts to refill it with tasks from
the global task pool. The number of transferred tasks de-
pends on the user-defined chunk size. If the private task
pool is still empty after the global task fetch (because of a
lack of tasks in the global task pool) the thread exits the task
fetch loop. Especially for small chunk sizes, this strategy
allows a very fine-granular distribution of tasks leading to
very good iteration length divergence compensation. How-
ever, this also introduces high costs due the large amount
of global memory accesses required to refill the private task
pools. Additionally, this leads to a strong scattering of tasks
that are processed by threads of the same warp. This might
have a negative impact if this results in scattered memory
accesses (Fig. 3(b)). Unlike the local strategy, the number
of thread blocks which are created at the beginning of the

(a) Local,
Colored Blocks

(b) Global,
Colored Warps

(c) Hybrid,
Colored Warps

(d) Persistent,
Colored Blocks

Figure 3. Color depicts warp or block membership
of a thread per pixel of a 128x128 image with different
work distribution techniques (computed from Fractals
example from Fig. 6, block consists of eight warps).
Note that only the persistent technique starts the pro-
cessing of tasks simultaneously for all threads of a
block.

1

1

c

1

......

11 1 1 1 1

Global
Task
Pool

Global
Task
Pool

 Private
Task Pool

Local Task PoolLocal
Task Pool

Single-Thread
Global Fetch

Locality
Check

Locality
Check

Task Data
Fetch

Task Data
Fetch

Task Data
Fetch

Task Data
Fetch

Task Data
Fetch

Locality
Check

Locality
Check

c + #idle

Warp Fetch
Phase

Global
Fetch
Phase

Local Fetch
Phase

Figure 4. Work acquisition for the local, global and
hybrid strategies (from left to right). c denotes the
chunk size.

kernel invocation is independent of the actual problem size
but is chosen such that the device can be fully occupied.

Hybrid

The hybrid strategy uses both local and global task pools
(Fig. 4 right). Threads which are out of work attempt to
fetch new tasks from the local task pool. If threads can-
not get a new task due to the local task pool being empty
(Locality Check), the thread that gets the smallest task id
beyond the valid range transfers tasks from the global to the
local task pool (Single-Thread Global Fetch). The amount
of fetched tasks is determined by the number of threads
which are currently out of work plus the chunk size. As
the local task pool in the hybrid technique is shared by a
warp, all involved threads run in lockstep which avoids ex-
pensive thread block level synchronization calls after up-
dating the local task pool. This technique uses significantly
fewer global memory fetches and task locality within a warp
can be preserved to a large extent (Fig. 3(c)). Similar to the
global method, the amount of thread blocks generated only
depends on the targeted hardware. Initially, the local task
pool is empty.

4

4.3 Task Fetch Control

The task fetch control determines when threads exit the
computation loop to fetch new tasks (Fig. 2). We experi-
mented with the following variants:

Any Leave the loop as soon as any thread is out of work

All Only leave the computation loop when all threads
are finished with their tasks (similar to the persistent
threads technique).

Ballot/Atomic Exit computation loop when a user-defined
number of threads is finished. (Ballot uses the warp
vote function, while atomic uses atomicAdd to deter-
mine the amount of idle threads).

Leaving the computation loop early (Any) leads to the mask-
ing of result writing and task fetching. Exiting the compu-
tation loop late (All), however, induces the masking of itera-
tions of the computation loop, which means that it does not
alleviate iteration divergence.

5 Results

Our techniques are evaluated by means of a synthetic
Monte Carlo program (Sec. 5.1, termination and branch
divergence) and two real world applications: Fractals
(Sec. 5.2, termination divergence) and isosurface ray cast-
ing (Sec. 5.3, branch divergence). We concentrate on re-
moving computational divergence only and try to avoid
other effects influencing the timing results like caching in
memory accesses as much as possible (this remains for fu-
ture work).

All tests were run on an NVIDIA GeForce GTX580 us-
ing CUDA 4.0. Reasonable chunk sizes for tackling ter-
mination divergence were determined empirically, ranging
between 256 and 12000 for Local, 1 and 8 for Global and
0 to 128 for Hybrid. The number of valid idle threads for
Ballot and Atomic techniques was varied between 1 and 32.
Variants of techniques resolving iteration divergence are de-
noted in the form [Task Fetching Technique] [Task Fetch
Control Technique]. For resolving branch divergence, the
most beneficial amount of task contexts per warp was em-
pirically determined to be 160 for Monte Carlo and 64 for
ray casting.

5.1 Monte Carlo

In each iteration of this generic, synthetic test case, a
random number is generated using the Sobol32 generator
of NVIDIA’s CURAND Library. Depending on the testing
scenario, this number either decides when to exit the com-
putation loop (for termination divergence) or when a branch

is entered that sums up several random numbers within an
inner loop (for branch divergence). In both cases, a single
iteration is cheap, but there can be significant overhead for
stepping through a masked branch path (branch divergence)
or having a large iteration count difference between threads
of a warp respectively (termination divergence).

Fig. 5 (left) shows the results for different scenarios with
increasing termination divergence through a decreasing kill
probability. Techniques that do not waste computation iter-
ations by leaving the computation loop early (Any and Bal-
lot/Atomic with a low amount of idle threads) perform best
with speedups up to factors of 4 to 5. In general, speedups
increase with divergence. As new tasks are assigned im-
mediately to idling threads they most effectively cope with
significant termination divergence. With a kill ratio of 0.1
(meaning low divergence and few iterations) it shows that
task fetch overhead can also be an important factor, espe-
cially when the computation steps are cheap like in this sce-
nario. In particular Global Any—which for higher load di-
vergences is very close to our best result—suffers from the
overhead of frequently accessing the global task pool, es-
pecially because many accesses to the pool happen simul-
taneously. Conversely, Hybrid Any and Hybrid Ballot are
even able to achieve a notable speedup of almost 1.2 in this
scenario due to their small overhead but nonetheless good
scheduling quality. Techniques that do not address thread
divergence (All and Persistent) do not achieve any speedup.

Fig. 5 (right) shows the performance of the branch diver-
gence test case with increasing probability to enter the com-
putation branch—both the loop surrounding and the loop in-
side of the branch run 1000 iterations. The effect of branch
serialization and the resulting negative performance impact
show clearly in the vanilla case: there is no performance
difference between one thread entering the branch or all
threads entering the branch. At least one thread enters the
branch reliably in each iteration from a branch probability
of≈ 0.1. In contrast, the runtime with our technique almost
linearly scales with the actual work that needs to be done.
Speedups of up to 15 were achieved with our technique for
low branch probabilities. If the the branch probability is
higher than 84% however (i.e. the efficiency loss due to di-
vergence is low), the usage of our technique is not beneficial
and even results in slower runtimes due to the introduced
overhead.

5.2 Fractals

This test case evaluates our techniques for resolving ter-
mination divergence by computing Julia set fractals with a
resolution of 2048 × 2048 using the implementation from
the CUDA SDK. The Julia set is computed iteratively by
evaluating a formula for every pixel until it either con-
verges or the maximum amount of iterations (specified by

5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0

 0.05

 0.1

 0.15

 0.2

 s %
kill probability

0.010.1 0.001 0.0001 0.00001

Local Any
Local All

Global Any
Global All

Hybrid Any

Hybrid All
Hybrid Ballot

Hybrid Atomic
Persistent
Ref. Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Ru
nt

im
e

in
 m

s

Ra
tio

 A
cc

el
er

at
ed

/V
an

ill
a

Branch Probability

Accelerated (Time)
Vanilla (Time)

Ratio

 0.1

Figure 5. The Monte Carlo testing scenario for termination (left) and branch divergence (right). Termination diger-
gence results are given relative to the vanilla variant (=100) whose absolute values are depicted in seconds by the
black line (right y-axis). Measurements were performed over a variety of chunk sizes, only the results for the best test
case are depicted. Right: Branch divergence was measured with varying probabilities for entering the branch.

the crunch factor) is exceeded. Besides the crunch factor,
we also modify the precision (single or double) and offset
parameters that influence the distribution of necessary iter-
ation counts from strongly divergent (offset 0) to constant
(offset 2) (Fig. 6). This allows us to cover the most im-
portant execution characteristics of parallel programs: it-
eration cost is steered by the precision (computations with
double precision take significantly longer), iteration count
depends on the crunch factor and iteration count distribu-
tion is a function of the offset parameter.

Figure 6. The amount of iterations (black = high)
necessary for computing a pixel in the Julia set with
different offsets (left: offset 0, right: offset 1). The
divergent warp counts are based on a vanilla kernel
with 8 × 4 warp tiles. Note that offset 2 would result
in a black box.

Our measurements show that fetching new tasks imme-
diately when a task is finished (Any and Ballot/Atomic
with minimal idle thread threshold) is most beneficial in al-
most all scenarios (Fig. 7, top). When divergence is low,
thread level work distribution is largely reduced to warp
level work distribution (like Persistent and All) leading to

similar speedups across all techniques doing task fetching.
Our Persistent Threads implementation in the framework
and the original implementation actually perform equally
well when starting them with the same amount of blocks.
The difference in the diagram results from the fact that we
spawn three blocks per SM, while we left the original imple-
mentation completely untouched (one block per SM). We
believe that this effect is due to a better occupancy with
more active warps per SM that can be used for latency hid-
ing.

Naturally, the speedup potential is higher for more diver-
gent cases (julia offset 0 allows for higher speedups than
julia offset 1). In the constant case (julia offset 2), there
are no speedups since no cycles are wasted by the vanilla
variant. The difference bars (Fig. 7, bottom) show that once
determined good settings for chunk size and idle threads
remain close-to-optimal across a wide range of scenarios.
Across all our tests (including Monte Carlo), chunk sizes
favoring the most flexible task distribution (at the expense
of higher task fetching costs) proved to be most beneficial
(small chunk sizes for Global and Hybrid as well as large
chunk sizes for the static task pool of Local). Similarly, the
best idle thread granularity setting is 1 across all scenarios
for Atomic and Ballot, basically reducing both to Any.

5.3 Raycasting Isosurfaces

Significant branch divergence occurs in our last test case:
multi-layer isosurface raycasting of scalar 3D functions.
Rays are cast from the view point into the function domain.
When a ray intersects one of eight isosurfaces (a surface
representing all points of a constant value), it determines
an accurate intersection position using bisection. For ren-
dering the isosurface (which has a distinct color), the first
and second order derivative are evaluated numerically at

6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7
Local Any

Local All
Global Any

Global All
Hybrid Any

Hybrid All
Hybrid Ballot

Hybrid Atomic
Persistent

Persistent Orig.
Ref. Time

 s %
2048 4096 8192 16384 2048 4096 8192 16384 2048 4096 8192 16384 2048 4096 8192 16384 2048 4096 8192 16384 2048 4096 8192 16384

double single double single double single
julia o�set 0 (strong divergence) julia o�set 1 (average) julia o�set 2 (no divergence)

deviation from optimum

Figure 7. Timing results in relation to vanilla technique (=100, absolute values depicted in seconds by the black line
(right y-axis)) the Julia set test scenarios. Persistent Orig. refers to the unmodified implementation of the CUDA SDK,
while Persistent refers to our implementation using more thread blocks. The top bars depict the best results for a given
scenario across a wide range of chunk size and idle thread settings while the bottom bars show the difference between
these and the best-performing constant parameter settings across all test scenarios.

this position using the SOBEL operator. Blinn-Phong shad-
ing is employed for lighting using the first order derivative
(i.e. the gradient), while the opacity of the isosurface is cal-
culated using the magnitude of the second order derivative
(Fig. 8 (left), similar to (Parker et al. 1998) and (Hadwiger
et al. 2005) among others). Branch divergence incurs from
rays hitting isosurfaces after a different amount of volume
sampling iterations, which forces threads to step through
the isosurface rendering procedure significantly more often
than actually needed.

We measured speedups of up to 7 using our proposed
technique (Fig. 8 (right)). By increasing the sampling dis-
tance (the step size), higher performance is achieved but
at the cost of lower precision. More divergence and thus
higher speedups were measured with smaller step sizes be-
cause fewer rays of a warp hit an isosurface at the ex-
act same step count. In contrast to the Monte Carlo test
case, using deferred context switching in this test case (with
n = 32) achieved speedups of up to 30% towards the stan-
dard branch divergence alleviation technique. As expected,
it is more beneficial for small step sizes as there is a large
amount of iterations in which no isosurface is hit, resulting
in a relatively large computational overhead of our frame-
work.

6 Conclusion

Current SIMT architectures potentially waste a large
amount of clock cycles due to diverging execution paths of
threads within a warp. We introduced techniques to resolve
both branch and termination divergence. Previously pre-
sented generic software techniques targeting this issue have
significant shortcomings, either they are not fine-granular
enough to really resolve the issue (e.g. persistent threads
only fetch additional tasks at the warp level (Aila and Karras

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Fr
am

es
 P

er
 S

ec
on

d

Step Size

Vanilla
Accelerated

Accelerated w/ Deferred

Figure 8. Left: Raycasting the hydrogen atomic
wave function ψ3,2,1 with a resolution of 512 × 512
and on-the-fly evaluation. Right: Timing results with
varying step sizes.

2010)) or induce significant overhead, several kernel calls
and the offloading of scheduling to the CPU (e.g. (Zhang
et al. 2010)). We achieve sizeable speedups both in syn-
thetic test cases and real world scenarios, even for code that
has been highly optimized already (between 1.5× and 3×
for fractals compared to tweaked persistent threads, up to
7× in isosurface raycasting). We implemented all of our
techniques in a framework that is minimally invasive and
thus easy to apply to existing algorithms. It further directly
supports empirically evaluating the best acceleration param-
eters for a specific problem by automatically generating per-
formance test cases for any parameter combination in a cer-
tain range.

For future work, we plan to conduct a more detailed anal-
ysis of memory coherency effects. Furthermore, we also
intend to introduce additional features that can easily im-
plemented on top of task fetching. These include the gen-
eration of tasks inside a kernel—which are then processed
in the very same kernel call—and the assignment of priori-
ties to tasks. Additionally, we plan to make the framework
publicly available.

7

Appendix

voteMask v = ballot([Enter if branch])
invalidMask i = ballot(context.invalid > 0)
consensus c = popc(v & ∼i) + |pool[voteTrue]| >

popc(∼v & ∼i) + |pool[!voteTrue]|

if [Enter if branch] != c or context.invalid > 0)
v = adjust(v, c)
loadOffset = popc((∼v | i) << threadId)
// if other context available switch, else invalidate
if loadOffset < |pool[c]|)
storeIndex = |pool[!c]|+threadId
pool[!c][storeIndex] = context
loadIndex = |pool[c]|−loadOffset
context = pool[c][load]
else if context.invalid == 0
context.invalid = branchNumber

if popc(i) == warpSize and |pool| == 0
exit computation()

Listing 1. Simplified implementation of vote and
switch (not considering permanently invalidated con-
texts). Shared memory is used for task context
pool/branch map.

References

AILA, T., AND KARRAS, T. 2010. Architecture Consider-
ations for Tracing Incoherent Rays. In Proceedings of
the Conference on High Performance Graphics, Euro-
graphics Association, 113–122.

AILA, T., AND LAINE, S. 2009. Understanding the Effi-
ciency of Ray Traversal on GPUs. In Proceedings of
the Conference on High Performance Graphics, 145–
149.

CERVINI, S., 2005. European Patent EP 1531391 A2: Sys-
tem and Method for Efficiently Executing Single Pro-
gram Multiple Data (SPMD) Programs.

FUNG, W. W. L., SHAM, I., YUAN, G., AND AAMODT,
T. M. 2007. Dynamic Warp Formation and Schedul-
ing for Efficient GPU Control Flow. In Proceedings of
the IEEE/ACM International Symposium on Microar-
chitecture, 407–420.

HADWIGER, M., SIGG, C., SCHARSACH, H., BHLER, K.,
AND GROSS, M. 2005. Real-time ray-casting and
advanced shading of discrete isosurfaces. Computer
Graphics Forum 24, 3, 303–312.

HAN, T., AND ABDELRAHMAN, T. S. 2011. Reducing
Branch Divergence in GPU Programs. In Proceedings
of the Fourth Workshop on General Purpose Process-
ing on Graphics Processing Units, ACM, New York,
NY, USA, GPGPU-4, 3:1–3:8.

LORIE, R. A., AND STRONG, H. R., 1984. US Patent
4,435,758: Method for conditional branch execution
in SIMD vector processors.

MENG, J., TARJAN, D., AND SKADRON, K. 2010.
Dynamic warp subdivision for integrated branch and
memory divergence tolerance. In ISCA ’10: Proceed-
ings of the 37th Annual International Symposium on
Computer Architecture, 235–246.

MOY, S., AND LINDHOLM, E., 2005. US Patent
6,947,047: Method and System for Programmable
Pipelined Graphics Processing with Branching In-
structions.

NOVÁK, J., HAVRAN, V., AND DACHSBACHER, C. 2010.
Path Regeneration for Interactive Path Tracing. In Pro-
ceedings of EUROGRAPHICS 2010, short papers, 61–
64.

NVIDIA, 2011. NVIDIA CUDA Programming Guide 4.0.

PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND
SLOAN, P.-P. 1998. Interactive ray tracing for isosur-
face rendering. In Proceedings of the conference on
Visualization ’98, IEEE Computer Society Press, Los
Alamitos, CA, USA, VIS ’98, 233–238.

STEFFEN, M., AND ZAMBRENO, J. 2010. Improving
SIMT Efficiency of Global Rendering Algorithms with
Architectural Support for Dynamic Micro-Kernels. In
Proceedings of the 2010 43rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO
’43, 237–248.

TZENG, S., PATNEY, A., AND OWENS, J. D. 2010.
Task Management for Irregular-Parallel Workloads on
the GPU. In Proceedings of the Conference on
High Performance Graphics, Eurographics Associa-
tion, M. Doggett, S. Laine, and W. Hunt, Eds., 29–37.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005.
RPU: A Programmable Ray Processing Unit for Real-
time Ray Tracing. ACM Trans. Graph. 24 (July), 434–
444.

ZHANG, E. Z., JIANG, Y., GUO, Z., AND SHEN, X. 2010.
Streamlining GPU applications on the fly: Thread
Divergence Elimination through Runtime Thread-data
Remapping. In Proceedings of the 24th ACM Inter-
national Conference on Supercomputing, ACM, New
York, NY, USA, ICS ’10, 115–126.

8

