
Volume 0 (1981), Number 0 pp. 1–11 COMPUTER GRAPHICS forum

Flow-based Temporal Selection for Interactive Volume Visualization

S. Frey and T. Ertl

University of Stuttgart, Visualization Research Center, Germany

individual renderings of selected time steps s0, …., s11 ∈ S

similarity chart

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

t

coverage of t by surrounding si = ⎣t⎦S & si+1=⎡t⎤S (height denotes highest similarity, color denotes s)

combined rendering ∀s ∈ S

distance to previous time steps (black ≙ close, white ≙ far), e.g., high similarity for:

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

(s2, s8) & (s3, s10)
selected time steps depicted by selection indicator (colored bar, opacity ≙ similarity)

Figure 1: Selecting time steps S = {s0, . . . ,sn−1} ⊂ T to optimally cover time series T based on flow-based distances. Here, five jets induce a
wave moving from the left to the right (s0− s5), with a similar movement occurring later at slower pace with lower mass (s6− s11). Individual
and combined renderings of time steps provide spatial relation and detail, and our similarity chart gives full coverage and distance information.

Abstract
We present an approach to adaptively select time steps from time-dependent volume data sets for an integrated and comprehensive
visualization. This reduced set of time steps not only saves cost, but also allows to show both the spatial structure and temporal
development in one combined rendering. Our selection optimizes the coverage of the complete data on the basis of a minimum-cost
flow-based technique to determine meaningful distances between time steps. As both optimal solutions of the involved transport
and selection problem are prohibitively expensive, we present new approaches that are significantly faster with only minor
deviations. We further propose an adaptive scheme for the progressive incorporation of new time steps. An interactive volume
raycaster produces an integrated rendering of the selected time steps, and their computed differences are visualized in a dedicated
chart to provide additional temporal similarity information. We illustrate and discuss the utility of our approach by means of
different data sets from measurements and simulation.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous—

1. Introduction

Advances in parallel computing systems for simulations and high-
accuracy measurement techniques drive the generation of time-
dependent data sets with increasing resolution in both time and

space. This data can feature millions of cells and thousands of time
steps, and thus poses significant challenges for visual analysis. Even
if all of the large data—potentially well-exceeding the available
memory—could be presented to the user interactively, still issues
due to occlusion and visual overload need to be prevented. While

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

relying on animation for time-dependent data is both a popular and
natural choice, it has been shown to be ineffective as only a limited
number of frames can be memorized by an observer (e.g., [JR05]).

To address these issues, our approach selects several time steps
and integrates them into one visualization that adequately depicts
the whole time range, conveying both spatial structure and temporal
development. The adaptive selection of time steps for visualization
is crucial, e.g., some processes of interest might occur in a relatively
short time range, and thus a regular selection might miss it partly or
even entirely. Furthermore, our selection process needs to be opti-
mized for high performance to be able to handle large data sets. In
the following, after a discussion of related work (Sec. 2), we exem-
plify our approach by means of an introductory example (Sec. 3a).
We then present what we consider to be our main contributions:

• our integrated approach for temporal volume analysis that sup-
ports the adaptive progressive incorporation of new time steps
(Sec. 3b,c). It consists of components for
• the flow-based distance computation between volumes via

Delaunay-triangulated samples and minimum-cost flow (Sec. 4),
• the selection of a variable number of time steps such that the

whole time series is optimally covered (Sec. 5),
• and the integrated rendering of selected time steps and visualiza-

tion of respective similarity information (Sec. 6).

We finally present results in Sec. 7 and conclude our work in Sec. 8.

2. Related Work

Visualization of Time-Varying Volume Data. A survey of the
visualization and visual analysis of multifaceted scientific data
in general was given by Kehrer and Hauser [KH13]. Joshi and
Rheingans [JR08] evaluate illustration-inspired techniques for time-
varying data, like speedlines or flow ribbons. Bach et al. [BDA∗16]
review a range of temporal data visualization techniques, interpret-
ing them as series of operations on a space-time cube. Likewise,
Woodring and Shen [WWS03] consider time-varying volumetric
data as a four-dimensional data field and apply high dimensional
slicing and projection techniques. Woodring and Shen [WS03]
further presented Chronovolumes, a static, direct rendering tech-
nique for time-varying data integrating all data over time in
one volume. In contrast, our approach renders just a selection
time steps to retain spatial shape information, and samples vol-
umes individually to achieve higher quality via post-classification
(cf. [HKRs∗06], Sec. 6a). Jang et al. [JEG12] employ functional rep-
resentations and efficient encoding to accelerate rendering. Balabian
et al. [BVMG08] use temporal transfer functions and compositors
(e.g., to highlight areas of high change). Lee and Shen [LS09a]
visualize trend relationships among variables in multivariate time-
varying data. Based on similarity matrices, Frey et al. [FSE12] detect
and explore similarity in the temporal variation of field data.

While we directly work with scalar volume data, a large body of
work in time-dependent volume visualization is based on feature
extraction. Widanagamaachchi et al. [WCBP12] employ feature
tracking graphs. Lee and Shen [LS09b] visualize time-varying fea-
tures and their motion on the basis of time activity curves (TAC) that
contain each voxel’s time series. Fang et al. [FMHC07] use TACs in
combination with different similarity measures. Silver et al. [SW97]

isolate and track representations of regions of interest. The robust-
ness of this approach has been improved by Ji and Shen [JS06]
with a global optimization correspondence algorithm based on the
Earth Mover’s Distance. Scale-space based methods and topologi-
cal techniques have also been used here (e.g., [WDC∗07, NTN15]).
Schneider et al. [SWC∗08] compare scalar fields on the basis of
the largest contours. Lu and Shen [LS08] propose interactive story-
boards composed of volume renderings and descriptive geometric
primitives. Post et al. [PVH∗03] and McLoughlin et al. [MLP∗10]
give an overview for respective approaches in flow visualization.
Here, among others, recent work focuses on glyphs [HLNW11],
visual exploration [vPOBB∗11], and efficient rendering [SZM∗14].

In our approach, a transfer function may be applied to the vol-
umes to define the (visual) importance of density values. While we
manually generated the ones used in this paper, approaches have
been proposed to (semi-)automatically generate transfer functions
for time-varying data. They can be classified into data- or image-
centric solutions [PLB∗01] (i.e., parameters are derived from the
volume or respective renderings). Jankun-Kelly and Ma [JKM01]
give an overview on early work. Woodring and Shen [WS09] em-
ploy temporal clustering and sequencing to find dynamic features
and create a corresponding transfer function. Akiba et al. [AFM06]
use time histograms that are partitioned w.r.t. temporal coherency.

Comparison and Selection of Time Steps. Our flow-based dis-
tance metric is conceptually based on the earth mover’s distance
(EMD, also known as the Wasserstein metric). The EMD basically
determines the minimum cost of turning one (mass) distribution into
the other. It is particularly popular in the computer vision community
where distances are typically computed between color histograms,
e.g., for image retrieval [RTG00]. It works by constructing a com-
plete graph (e.g., each pair of histogram bins is connected by an
edge), and then using a minimum-cost flow solver to compute the
distance (e.g., [GT90]). Bonneel et al. [BvdPPH11] decompose dis-
tributions into radial basis functions, and then apply partial transport
that independently considers different frequency bands to interpolate
between BRDFs, environment maps, stipple patterns, etc. Tong et
al. [TLS12] use different metrics to compute the distance between
data sets, and employ dynamic programming to select the most
interesting time steps accordingly. In contrast to our approach, the
aforementioned techniques use fully connected complete graphs for
distance computation, which becomes prohibitively costly when con-
sidering a larger number of elements (cf. Sec. 7c for a comparison).
Tong et al.’s selection approach is also excessively expensive in a
number of cases (e.g., when choosing relatively few time steps from
a long series). Therefore, we propose a novel selection procedure
and employ progressive refinement. While we directly use volume
data and its scalar values, Wang et al. [WYM08] extract a feature
histogram per volume block (typically hundreds to thousands of vox-
els). While this allows them to consider higher-dimensional values,
e.g., including gradient magnitude and direction, we can adequately
handle small-scale movement, e.g., from a thin surface (cf. Fig. 8a).
They derive entropy-based importance curves (similar to TACs) that
characterize the local temporal behavior of each block. These are
then classified via k-means, and the time range is partitioned into
segments with equal accumulated importance values. One time step
is chosen from each segment, taking into account the previously
selected step (the first time step is always selected). Basically, this

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

(a) all time steps aggregated (e.g., [WS03]) (b) regular selection (c) our adaptive selection

Figure 2: Rendering the Bottle data set with (a) all time steps, and |S|= 6 time steps ((b) selected regularly and (c) with our approach).

relies on having a globally valid importance number for each time
step. In contrast, we solely consider the mutual distances between
all time steps (not just selected ones) to directly optimize the cov-
erage of the whole time series (Wang et al. also discuss that their
measure conceptually deviates from distances between time steps).
The field of video analysis also deals with related analysis problems,
yet typically employing different methodologies. Specialized image
and video metrics are used to compare frames (e.g., [SB10]), and
distinct approaches were proposed to generate summaries of videos,
e.g., based on the motion of actors over time [CM10].

3. Overview and Structure

(a) Introductory Example. We now exemplify our approach with
captured data from a laser pulse shooting through a bottle (Velten et
al. [VWJ∗13], cf. Sec. 7). In Fig. 2 (a), we map each time step to a
different color and aggregate over time. While it roughly depicts the
overall progress, the local shape of the pulse spreading out is lost.
The colormap is also not fully utilized: it covers time ranges with
basically nothing happening (particularly toward the end). In (b),
we selected time steps with a regular spacing in time. While in the
composited visualization individual time steps show the shape of
the pulse, only a very sparse overview is given, and three out of the
six selected time steps are practically empty. Through the adaptive
selection with our approach (c), the overall progress can be seen in
much more detail, showing the different stages that occur in the time
series. The similarity chart (b and c, bottom) additionally depicts
distances between time steps (similarity is indicated by color, where
white represents the “empty” volume, cf. Sec. 6b).

(b) Main Components. Alg. 1 gives an overview of our approach.
Initially, the set of considered time steps T∗, the set of selected time
steps S[], and the map D storing the distances between time steps
t ∈ T∗ are empty (Lines 2–4). In each iteration of our selection
update loop, we obtain a new set of of time steps ∆T , either (i) as a
subset ∆T ⊂ T −T∗ from the full set of all time steps T (Line 6), or
(ii) from an input stream delivering later time steps, e.g., from a con-
currently running simulation (Line 7). In the remainder of the paper,
we concentrate on (i), the adaptive loading of time steps (Sec. 3c).
However, we give an outlook on (ii) in Sec. 7f. Here, while we could
also run just one refinement iteration (i.e., ∆T = T), it reduces the
time until (preliminary) selection results are computed. If ∆T is
empty (i.e., T∗ = T already), we are done (Line 8). Otherwise, we
integrate ∆T into T∗ (Line 9), and update the distance map D with

Algorithm 1 Our approach for flow-based temporal selection.
1: procedure FLOW-BASED TEMPORAL SELECTION

2: T∗←{} . set of considered time steps
3: S[]←{} . set of selected time steps
4: D←{:} . map of distances between time steps
5: loop . progressively incorporate time steps (via (i) or (ii))
6: (i) ∆T ← PROGRESSIVELOADING(D,T,T∗) . ↓storage (Sec. 3c)
7: (ii) ∆T ← INPUTSTREAMBUFFER(·) . ↓stream (Sec. 7f)
8: if ∆T = {} then return . exit if there are no new time steps
9: T∗← T∗∪∆T . merge with current set of time steps

10: for all ta ∈ ∆T do . update distance map
11: for all tb ∈ T∗ do
12: D← D∪{(ta, tb) : FLOWDISTANCE(ta, tb)} . (Sec. 4)
13: S[]← SELECTION(D,S[]) . select time steps (Sec. 5, Alg. 2)
14: S← Sk . visualization w/ k selected time steps (user-defined,Fig.5)
15: VOLUMERAYCASTING(S) . render volumes (Sec. 6a, Alg. 3)
16: SIMILARITYCHART(D,S) . show selection & distances (Sec. 6b)

the flow-based distances between all newly added time steps ta ∈ ∆T
and all currently considered time steps tb ∈ T∗ (Lines 10-12, Sec. 4).
Based on D and the previous selection set S[], we update S[] with
the goal to optimally cover the full time series T (Line 13, Sec. 5).
We visualize the selection consisting of k = |S| selected time steps
(Line 14), both directly with volume rendering (Line 15, Sec. 6a)
and the respective distances via similarity charts (Line 16, Sec. 6b).

(c) Progressive Loading of Time Steps. We add new time steps
∆T ⊂ T to our current set T∗ ⊂ T with an adaptive selection scheme
(PROGRESSIVELOADING(D,T,T∗), Line 6). Initially, we use the
first and last time step in T , partition the range in between into
equally-sized intervals, and randomly choose one time step from
each. Later, the distances d(ta, tb) ∈ D between subsequent con-
sidered time steps (tn, tn+1 ∈ T∗) define a discrete probability dis-
tribution P that assigns a probability pt ∈ P to each t ∈ T − T∗:

pt =
d(btcT∗ ,dteT∗)
dteT∗ −btcT∗ −1

. (1)

Here, b·cT∗ and d·eT∗ denote the surrounding previous and next
time step in T∗, respectively. Basically, a higher weight is applied
between far-apart time steps tn, tn+1 ∈ T∗, whereas each time step
within such an interval has equal chances of getting picked. Then,
we simply sample P randomly to obtain new time steps ∆T .

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

t40

t90

mass distribution samples

V90

V40

(a) Sampling of mass distributions

samples (from t40 / t90)

edge

G40,90

(b) Connection of samples of two time steps

edge thickness & color ≘ flow of mass

d(t40, t90) = ()
min

max

∑

(c) Flow gives mass movement along connections

Figure 3: Distance computation between two time steps at the example of time steps t40 and t90 of the Bottle data set.

4. Time Step Difference

We employ a flow-based distance metric that directly accounts for
the (global) movement of mass. Mass is given by the scalar values
of the volume data set (potentially after transfer function mapping).
In contrast to the flow-based approach, an element-based distance
metric only assesses differences for each element in space locally
(e.g., individually for each grid cell). In other words, a flow-based
method quantifies how much mass is moved how far, while an
element-based method only assesses how much has changed at a
certain location (disregarding the involved shift, cf. Sec. 7d). We
efficiently compute flow-based distances between two time steps
ta, tb ∈ T∗ in three basic steps (cf. Fig. 3, discussed in detail below):

(a) Sampling of volumes of ta and tb to yield samples Va and Vb.
(b) Connection of Va and Vb to obtain flow graph Ga,b.
(c) Flow computation solving graph Ga,b to yield d(ta, tb).

(a) Sampling (ta→Va, tb→Vb, Fig. 3a). Each time step t ∈ T is
represented by a scalar volume Mt : R3→ R. To Mt , a user-defined
transfer function (R→ R) may be applied to define value ranges of
interest for the analysis (as well as their respective visual weight).
In the following, we denote and handle Mt conceptually as a generic
mass distribution. First, we sample Mt to yield a set of samples Vt
with a fixed number of elements |V |. For this, we consider Mt as a
discrete probability distribution, and sample it by (1) randomly
generating numbers in the range [0,∑Mt

], and (2) choosing the
associated elements in Mt via the prefix sum of Mt (this is done
similarly for the adaptive loading of time steps in Sec. 3c). For the
subsequent steps, only these samples Vt need to be stored (and Mt
may be discarded), which is crucial for efficiently processing large
volume data sets. Most importantly, a fixed number of samples |V |
across time steps directly delivers “balanced” problems for flow
computation without further actions required (cf. (b, c)). It further
yields easier-to-predict performance across different data sets, not
only with respect to storage space but particularly regarding the
required time for distance computation. While a large number of
samples |V | increases accuracy, it also increases storage cost as well
as the computational cost of the subsequent Connection and Flow
steps (cf. Sec. 7a for a closer discussion and evaluation). Vt needs to
be regenerated when the transfer function is changed non-uniformly
(plain scaling does not change the normalized mass distribution Mt).

(b) Connection ((Va,Vb)→ Ga,b, Fig. 3b). To compute the dis-
tances between two time steps ta and tb, we now generate a flow
graph Ga,b on the basis of the sample sets Va and Vb. Ga,b contains

edges e ∈ Ea,b between these samples, where each edge is weighted
w(e) with the L1 distance between the respective sample pair (i.e.,
Ga,b is weighted and undirected). We assign mass m(va) = 1 to all
samples va ∈ Va, while samples in vb ∈ Vb get m(vb) = −1 (such
that ∑v∈Va∪Vb

= 0 as |V |= |Va|= |Vb|). For efficiency, we consoli-
date samples from the same spatial location φ, i.e., we replace them
with a new vertex vφ with m(vφ) = ∑v∈Va(φ)∪Vb(φ) m(v).

Typically, the EMD uses a bipartite graph that is generated by
adding one edge for each pair of samples (va,vb), with va ∈ Va
and vb ∈ Vb (cf. Sec. 2). While this allows to determine an opti-
mal solution (i.e., finding an assignment Va → Vb with minimal
associated cost), it also results in a total of |Va| · |Vb| edges. This
mainly causes the comparably high complexity of EMD, and makes
it prohibitive to use for larger number of samples (e.g., there are
millions of edges for thousands of samples already, cf. Fig. 7 and
Sec. 7a). We therefore propose a different approach that significantly
decreases the number of generated edges E, while still delivering
close-to-optimal solutions. We add edges between the combined set
of samples V =Va∪Vb, but only connect proximate vertices directly
via 3D Delaunay triangulation (we employ CGAL’s implementa-
tion [JPT15], Fig. 3b). This yields nice properties for our resulting
graph with a relatively low number of edges |E|. First, the nearest
neighbor graph is a subgraph of the Delaunay triangulation, which is
important for close samples. Second, the shortest path between two
vertices along Delaunay edges cannot be longer than 4π

3
√

3
≈ 2.42

times the Euclidean distance between them (e.g., [CDS12]).

(c) Flow (Ga,b → d(ta, tb), Fig. 3c). With our flow graph Ga,b,
the remaining step is now to solve the respective minimum-cost flow
problem: finding the cheapest possible way of turning Va into Vb
by transporting masses over the edges E. To achieve this, a solver
computes a flow F that determines how much mass is transported
over each edge e ∈ E (in which direction). The solver does so in a
way such that (1) applying F to Va turns it into Vb, and that (2) the
associated cost d(ta, tb) is minimal, with

d(ta, tb) = ∑
e∈E

Fa→b(e) ·w(e). (2)

To compute Fa→b, we apply Google’s implementation of a cost-
scaling push-relabel algorithm to our graph Ga,b [Goo15]. It main-
tains a preflow and gradually converts it into a maximum flow by
moving flow locally between neighboring vertices using push op-
erations considering an admissible network maintained by relabel
operations [GT90]. We have no capacity constraints on the edges as
in more general formulations of the minimum-cost flow problem.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

Algorithm 2 Optimization of the set of selected time steps S[] (Sk
gives best determined selection with k selected time steps, γ(S1)≤
γ(S2)≤ . . .≤ γ(Sσ−1)≤ γ(Sσ), cf. Fig. 5).

1: function SELECTION(D,S[]) . best selection of 1. . . σ time steps
2: for p ∈ {1 . . .n} do . run n iterations to improve S[]
3: S∗←{},Γ←{} . initialize selection set and distance buffer
4: for k ∈ {1 . . .σ} do . incrementally add σ time steps
5: for all t ∈ T∗−S∗ do . loop over time steps not in S∗

6: Γt ← γ(S∗∪ t) . compute distance for each t

7: if minγ(Γ) < γ(Ss) then . smallest distance in Γ is best overall?
8: Sk← S∗∪mint(Γ) . update best selection of s time steps
9: Γ′← 1− Γ−minγ(Γ)

maxγ(Γ)−minγ(Γ)
. normalize

10: S∗← S∗∪weightedRandomSamplingt(Γ
′) . randomly choose

return S[]

5. Distance-based Time Step Selection

We aim to select time steps S ⊂ T such that they optimally cover
the whole time series T . For this, we quantify the coverage of each
time step t ∈ T via its minimum distance to neighboring selected
time steps s ∈ S (we also take special means to account for time
steps that exhibit low total mass or that have not been loaded yet).
Overall coverage is then computed as the sum of of all individual
coverage values (a). On this basis, we generate not just one but a set
of selections S[] consisting of 1 . . .σ time steps for flexible interactive
exploration. For this, we employ an iterative optimization approach:
in each iteration, starting from k = 1 time steps, we incrementally
add time steps to a selection candidate S∗, and update selection
Sk ← S∗k if its coverage is better than with current best selection
Sk (b). We propose an iterative Monte Carlo-based approach as
computing the optimal solution typically causes excessive cost in
practice (there are

(|T |
|S|
)

possibilities to select |S| time steps from
a time series of length |T |). For small problems, we compare our
approach against the optimal solution in Sec. 7c.

(a) Time Series Coverage. The basis of our selection approach
is a metric that quantifies the coverage of T with a subset S ⊂ T .
For this, apart from t ∈ S, we also consider the empty volume ε with
zero mass to adequately account for time steps of negligible total
mass (i.e., that are (almost) fully transparent in terms of volume
visualization). We do not want to explicitly have to store and visu-
alize these, even if they exhibit a large distance to other time steps.
Accordingly, the empty volume ε is never part of a selection S, but
only considered in our criterion to quantify coverage. Using this, our
coverage criterion γ(S) is computed by the sum of the squared mini-
mum distances of each time step t ∈ T to its surrounding selected
time steps (b·cS & d·eS) and ε:

γ(S) = ∑
t∈T

min(d(btcS, t),d(t,dteS),d(t,ε))
2/|T |. (3)

b·cS and d·eS denote the next lower and upper time step in S. If
there is no lower or upper neighbor, the distance computation yields
d(·, t) =∞. For all t ∈ T∗ the required distances d have been com-
puted previously and stored in map D (cf. Alg. 1, Lines 10–12).
Additionally, we need distances to (1) the empty volume ε, and (2)
the time steps t ∈ T −T∗ that have not been loaded yet.
(1) d(t,ε). We compute the total mass mt = ∑m∈Mt

m of mass distri-

bution Mt (cf. Sec. 4a), and define the distance to the empty volume
to be d(t,ε) = mt ·ω (i.e., the weighted total mass). Here, ω de-
fines the ratio w.r.t. a maximally possible total mass of 1 (a fully
opaque volume, in terms of volume visualization). Conceptually, it
expresses how much mass is still regarded to be (visually) signifi-
cant. We determined a value of ω = 0.0001 to be generally useful
via experiments and employ it throughout this paper.
(2) d(t, t∗) for t ∈ T −T∗, t∗ ∈ T∗. We first determine the surround-
ing considered time steps btcT∗ and dteT∗ (b·cT∗ and d·eT∗ denote
the next lower and upper time step in the set of considered time
steps T∗). Based on this, we then estimate the distance d(t, t∗) as
follows for t ∈ T −T∗, t∗ ∈ T∗:

d(t, t∗) =
d(btcT∗ ,dteT∗)
dteT∗ −btcT∗

·

{
(dteT∗ − t) if t∗ < t
(t−btcT∗) else

}

+

{
d(btcT∗ , t

∗) if t∗ < t
d(dteT∗ , t

∗) else

}
.

(4)

This means that to compute d(t, t∗) with t∗ > t, we first estimate the
distance of t to dteT∗ via linear interpolation (Eq. 4 top), and then
add the distance of dteT∗ to t∗ (Eq. 4 bottom) (vice versa for t∗ < t).
For each required distance computation at least one time step is an
element of T∗, as no timestep t /∈ T∗ can be part of selection S.

(b) Selection Approach. Conceptually, we aim to minimize the
distance of the selected time steps S to the full set of time steps T :

min
S⊂T∗

(γ(S)) . (5)

Our approach toward this goal generates not just one but a set
of selections S[] consisting of 1 . . .σ time steps (σ being a user-
defined value). Providing this range of selections S[] together with
their respective distance values γ allows to choose one selection
Sk (k ∈ {1 . . .σ}) from this range a posteriori (Alg. 1, Line 14).
Basically, we execute several iterations of our optimization scheme
(Alg. 2, Line 2), each of which generates selections S∗ consisting of
1 . . .σ time steps. In this process, we initially assign the empty set to
S∗ (Line 3), and then iteratively add time steps to it in the following
(Line 4). For each number of selected time steps k, we evaluate the
distances of S∗ ∪ t for all time steps t ∈ T∗ that are not yet in S∗

(Line 5). The result for each time step t is then stored in a map Γ

(Line 6). For the sake of efficiency, we only evaluate the changed
parts of S∗ w.r.t. the previous iteration. We achieve this by caching
the sum of distances d∑(sa,sb) between pairs of subsequent time
steps sa,sb ∈ S∗∪{t0, t|T |−1}: d∑(sa,sb) = ∑t∈{sa,...,sb} γt(S).

The result map Γ is then used for two purposes. First, we select
the time step t that yields the smallest value, and potentially update
S[] accordingly (Lines 7 & 8). Second, we add a time step to our
current set S∗ that is then used as basis for the next iteration. For
this, we first transform the contents of our distance map Γ to Γ

′ such
that the largest distance translates to zero and the smallest distance
to one (Line 9). We then use weighted random sampling on Γ

′ to
determine the time step that is added to S∗ (Line 10). In essence,
this means that theoretically all time steps (except for the one with
the worst coverage) could be chosen, yet the respective likelihood
increases with their impact on the coverage of the time series.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

(a) Supernova simulation (b) λ2 vortex criterion (c) Jet simulation

Figure 4: Selections for |S|= 4. The selected time steps of the Supernova data set (a) are rather evenly distributed, representing the underlying
steady development. Both in the λ2 (b) and the Jet data set (c), values of interest do not emerge immediately from the start of the series. While
in (b) vortices develop in the center and evenly disaggregate outward, (c) the Jet starts slow, but rapidly changes its structure toward the end.

6. Visualization

We present individual and integrated volume renderings of selected
time steps S (cf. Fig. 4 top & center) and give the distances between
time steps via our similarity chart (cf. Fig. 4 bottom). A user may
also interactively select time steps S. The similarity chart both di-
rectly visualizes the distance map D and depicts the coverage γt(S)
provided by the selected time steps S for each time step t.

(a) Individual and Integrated Volume Rendering. We provide
both renderings χ

0...|S|−1 of all selected time steps S individually
as well as an integrated volume visualization χ of all time steps
in S (Alg. 3). A 3D atlas texture stores the volumes of time steps
∈ S. We employ front-to-back volume raycasting (Line 3). For each
sampling position p, we loop over all selected volumes S (Line 5).
We fetch the color rgb and opacity α for the respective sample via
mrgbα (Line 6). The mapping of color depends on the order i of the
respective selected time step si ∈ S (we employ a color progression
from red over green and blue to violet, Fig. 2a bottom). The opacity
α is directly taken from the mass distribution of a time step. With rgb
and α, we update the entry χ

i of the individual renderings (Line 7).
We employ shadow and lighting operations (sl) to improve the visual
comprehensibility of structures. We further use a shadow map that
was pre-computed by sending shadow rays to each light source (it is
updated as soon as the mass distribution or the selection changes).
It stores a separate shadow entry for each selected volume t ∈ S
and each light source using the same atlas structure employed for
the volume data. We use the individual entries for each selected
time step to generate the individual time step renderings (Line 7,
Fig. 4 top), and later the combination of all shadow rays to yield the
integrated rendering (Line 11, Fig. 4 center).

For the combined rendering, the blending order of integration
through time can have a significant visual impact when different
regions of interest in time are co-located in space. The occurring
effect of earlier time steps occluding older time steps has been de-
noted as temporal occlusion [WS03] (cf. Fig. 9b). Woodring and
Shen [WS03] work around this issue by letting the user explicitly
assign opacities to different time steps to specify their importance.
Instead, we employ a step slicing approach to adequately composit
the values from different volumes: we scale the opacity contribu-
tion of each time step with a (conceptually infinitesimally) small
∆ (Line 8). Here, we limit the maximum opacity to a value that
is slightly below 1 to achieve an adequate combination with the
other time steps even if some of them are fully opaque. We then
convert from premultiplied to straight color (Line 9), stretch the
opacity contribution of the step back again from ∆ to 1 (Line 10),
and composit the result (Line 11). We terminate our ray early if all
individual entries χ exhibit a large enough opacity value (Line 12).

(b) Similarity Chart. Similarity charts (e.g., Fig. 4 bottom) con-
sist of two components: the selection chart and the distance plot.
Selection charts (top half) depict selected time steps S and show
the coverage of the time steps in between. Each time step is rep-
resented by a bar, whose height represents the smallest distance
d(·, ·) of the respective time step to either of its two neighbors or
the empty volume ε (cf. Eq. 3). With the maximum distance dmax
occurring in a time series, we determine the height h of a bar as
follows: h = ĥ(1−d(·, ·)/dmax) (i.e., γt(S) = 0 leads to a selection
bar of maximum height ĥ for time step t, while the maximum dis-
tance dmax yields a zero-height bar). The color of the bars represents
which selected time step (or the empty volume ε) the respective time
step has the smallest distance to. For selected time steps t ∈ S, this

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

Algorithm 3 Volume rendering of selected time steps S for each
step along a ray during raycasting (w/ ray step size 1). We use slicing
step size ∆ << 1. mi

rgbα(·) gives color w.r.t. the selection index i,
and opacity α is obtained from the mass at the current position p.
sli(·) gives the results of shadowing and lighting for si ∈ S.

1: procedure VOLUMERAYCASTING(S)
2: χ,χ0, . . . ,χ|S|−1← (0,0,0,0)
3: for all p ∈ Pray do . sample front-to-back along ray
4: χ′← (0,0,0,0) . integrated sample for combined rendering
5: for i ∈ 0 . . . |S|−1 do . integrate over all selected time steps
6: rgb,α← mi

rgbα
(p) . lookup color and opacity for i

7: χi← over(χi, (sli(rgb, p),α)) . composit for individual render
8: χ′← over(χ′, (rgb,1− (1−α)∆)) . composit (step size ∆)
9: χ′rgb← χ′rgb/χα . convert from premultiplied to straight color

10: χ′α← 1− ∆
√

1−χ′α . stretch contribution from ∆ to 1
11: χ∑ ← over(χ, (sl(χrgb, p),χα)) . composit combined rendering

12: if min(χ0...|S|−1
α) > 0.98 then . early ray termination

13: break

color comes directly from mrgb (cf. (a)). For t ∈ T∗−S, we mix the
colors weighted by their distance, with the empty volume ε being
represented by white. Selected time steps t ∈ S are indicated via
an extra black line through their middle. For each time step, the
distance plot (bottom half) depicts the distances to all previous time
steps (in the case of progressively loading time steps, missing dis-
tances are interpolated for display). High and low opacity (of black
pixels) denote high and low similarity, respectively. We also reduce
the opacity in case of low distance to the empty volume ε. Distance
plots can help to identify recurrent patterns in the data (cf. Fig 1).
In the plot, the distance between selected time steps is highlighted
via colored boxes (w/ low opacity =̂ large distance). For orienta-
tion, fully opaque arrows also indicate selected time steps along the
y-axis to the right. Elements in the distance plot may be selected
directly during interactive analysis—using the left and right mouse
button to pick a time step w.r.t. the x- and y-axis, respectively—to
analyze temporal patterns (cf. Fig. 8).

7. Results

We use six data sets in our evaluation. The 5Jets data set (1283,
2000 time steps) results from a simulation of five jets entering a rect-
angular region (Fig. 1). The Bottle data set (resolution 900×430,
465 time steps) depicts a laser pulse shooting through a bottle, cap-
tured via Femto Photography (Velten et al. [VWJ∗13], Fig. 2). The
Supernova data set (4323, 60 time steps) results from a supernova
simulation (Fig. 4a). Next, the λ2 data set (5293, 174 time steps) con-
tains the λ2 vortex extraction criterion applied to a CFD simulation
(Fig. 4b). The Jet data set (480×720×120, 121 time steps) stems
from a turbulent combustion simulation (Fig. 4c). 5Jets, Supernova
and Jet were obtained from http://vis.cs.ucdavis.edu.
The Droplet data set (2563, 1000 time steps) contains simulation
results of two drops colliding asymmetrically (Fig. 10, courtesy of
C. Meister, Institute of Aerospace Thermodynamics, University of
Stuttgart). For it, we use the data values directly as mass, while a
custom transfer function is used for the others. We supply full time
series renderings of each data set as well as an interaction demo
in our accompanying video. We used an NVIDIA GTX980, an In-

data set Supernova Jet λ2 Bottle Droplet 5Jets
#t time steps |T | 60 121 174 465 1000 2000
distances |D| 1830 7381 15225 108345 500500 2001000

distance timings (∑) 535 s 2454 s 4832 s 19621 s 164014 s 369419 s
distance timings (∑

|D|) 0.29 s 0.33 s 0.31 s 0.18 s 0.32 s 0.18 s

selection timings (∑) 98.5 s 214.9 s 317.42 s 943.6 s 2300.1 s 6526.5 s
selection timings (∑

n) 0.0007 s 0.001 s 0.002 s 0.007 s 0.017 s 0.049 s

Table 1: Full distance and selection timings (T∗ = T,σ = 32).

tel Core i7-4770, and 16GB of memory in our evaluation. While
volume visualization uses the GPU via CUDA, distance computa-
tion and time step selection run in parallel on the CPU with eight
threads using OpenMP. Throughout our evaluation, we used several
settings that—according to our experiments—generate good results
at acceptable run times: we took |V | = 4096 samples from each
time step for distance computation, weighted the empty volume ε

by ω = 0.0001, and rendered at a resolution of 1920× 1200. For
time step selection, we used n = 131072 runs for one execution
of SELECTION(·) in the non-progressive case. In the progressive
case, SELECTION(·) executes every time new time steps are loaded.
As it does not start from scratch but iteratively improves selection
S[], we used only n = 4096 runs per execution. These settings are
chosen conservatively, i.e., after the specified number of iterations,
the selection typically did not change anymore in our experiments
(and if, only negligible improvements were achieved). In general,
volume render times vary with the resolution of the data set, the
number of selected time steps, as well as its mass distribution (due
to early ray termination). It remains interactive for all considered
data sets (and moderate |S|), e.g., rendering the Jet with |S|= 6 time
steps takes ≈ 75 ms per frame, while the Supernova takes around
185 ms due to its larger resolution. In the following, we

(a) demonstrate results of our flow-based distances and selection,
(b) discuss timings and the progressive incorporation of time steps,
(c) compare against optimal solutions w.r.t. distances and selection,
(d) compare against results achieved with element-based distances,
(e) compare our compositing scheme against alternatives,
(f) and finally discuss limitations and potentials for extensibility.

(a) Flow-based Distances and Selection (Figs. 4 & 5). We se-
lect time steps such that they adequately cover the whole time series.
If the rate of change is relatively steady, then this results in a compa-
rably uniform selection, as in the example with the Supernova data
set (Fig. 4a). If, in contrast, the rate of change varies significantly,
our selection process adapts to this by picking more time steps in
intervals with a higher rate of change. This has been shown earlier
with the 5Jets data set (Fig. 1): initially, five jets induce a wave, with
a similar movement occurring later at a slower pace. Accordingly,
more time steps are selected in the very beginning, with the later
time range being represented much more sparsely. For λ2, particu-
larly high vorticity values are of interest: they only occur in a limited
range of time steps, but evenly disaggregate outward within this time
frame (Fig. 4b). In contrast, the Jet data set slowly develops a certain
structure in the beginning, with rapid changes happening toward the
end (Fig. 4c). Both in the λ2 and the Jet data set early time steps are
covered via empty volumes in temporal ranges exhibiting little to no
mass (i.e., very low visual impact). This has also been demonstrated
earlier with the Bottle data set where one laser pulse is traced, and
basically nothing happens before and after (Fig. 2).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://vis.cs.ucdavis.edu

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

Supernova

Jet

λ₂

Bottle

Droplet

5Jets

(a) Selection refinement from |S| = 4 (red/bottom) to |S| = 32 (blue/top).

5 10 15 20 25 30

number of selected time steps |S|

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

di
st

an
ce

γ
/
γ
|S
|=

4

Supernova (γ|S|=4 = 1.40e− 13)

Jet (γ|S|=4 = 8.99e− 13)

λ2 (γ|S|=4 = 4.69e− 14)

Bottle (γ|S|=4 = 1.52e− 08)

Droplet (γ|S|=4 = 7.77e− 13)

5Jets (γ|S|=4 = 2.04e− 11)

(b) Time series coverage γ(·) w.r.t. the number of selected time step in
our selection (thick lines) and the uniform selection R (thin lines).

Figure 5: Selections S[] for our data sets from |S|= 4 to |S|= 32.

Our selection procedure generates a set of selections S[] consist-
ing of |S| ∈ {1 . . .σ} time steps. Each of these selections S ∈ S[]
reflects the temporal development of the data, with a higher rate
of refinement for increasing |S| (Fig. 5a). Accordingly, our error
evaluation criterion γ(S) decreases with higher values of |S|. Overall,
this happens at a similar rate across all considered data sets (Fig. 5b).
While the uniform selection R also benefits from more selected time
steps, the coverage is significantly worse in comparison to S.

(b) Timings & Progressive Refinement (Tab. 1, Fig. 6). To
reach final selection results (i.e., for T∗ = T), we require all mutual
distances between considered time steps (and the empty volume ε):
t0, t1 ∈ T ∪ ε and t0 < t1 (distance computations are commutative).
Tab. 1 lists distance computation and selection timings for different
data sets. The average performance of computing a single time step
varies depends on the structure of the constructed flow graph. Sam-
pling (that only needs to be done once per time step) and Connection
only have negligible performance impact, with the major time share
being consumed by the solver to determine the Flow (Sec. 4). Nat-
urally, the total time for full distance computation and selection
heavily depends on the number of time step |T |. To address the high
full computation time for data sets with a high temporal resolution,
our approach supports the progressive selection with continuously

(a) Selection refinement for 5Jets (black denotes missing time steps).

101 102 103 104 105 106

time for distance computation and selection (in seconds)

1.0

1.5

2.0

2.5

3.0

γ
(S
∗
)/

γ
(S
)

Supernova

Jet

λ2

Bottle

Droplet

5Jets

(b) Time spent for progressive refinement and achieved distance in
relation to final result considering all time steps (i.e., for T = T∗).

Figure 6: Progressively adding time steps from T to T∗ (|S|= 8).

data set Supernova Jet λ2 Bottle Droplet 5Jets
(time steps) 60 60 87 60 66 66

distance timings (del.=̂Delaunay triangulation; com.=̂complete graph)
time del. 518.4 s 599.7 s 1231.5 s 509.8 s 788.3 s 409.8 s

time com. 51482.4 s 44912.2 s 87841.5 s 37301.6 s 32345.8 s 21630.7 s

evaluation of distances computed with del. w/ com. as reference
∆d avg 1.03 1.03 1.03 1.01 1.01 1.02
maxd 1.08 1.10 1.10 1.08 1.05 1.10

selection timings with stochastic (sto.) and full optimization
time sto. 10.7 s 10.5 s 16.21 s 10.6 s 14.6 s 11.8 s
time full 41.0 s 41.0 s 452.3 s 41.0 s 262.4 s 76.0 s

evaluation value γ of selection (|S| = 6; relative to com. full)
del. & sto. 1.000 1.000 1.000 1.000 1.000 1.006
del. & full 1.000 1.000 1.000 1.000 1.000 1.000

com. & sto. 1.000 1.000 1.008 1.000 1.000 1.000
com. & full 1 1 1 1 1 1

regular 1.225 2.112 1.570 2.058 1.437 3.001

Table 2: Comparison of our approach against optimal solutions both
for computing distances and selections (downsampled time range).

added time steps T∗ ⊂ T . Fig. 6a depicts the continuous refinement
of the selection over time as well as the incremental addition of new
time steps. Fig. 6b shows the coverage (in relation to the final result)
w.r.t. the time spent for selection and distance computation. A close
approximation to the final result is achieved quickly after tens to
maximally 250 seconds across all considered data sets.

(c) Comparison Against References (Tab. 2, Fig. 7). Next, we
compare our approaches for distance computation and selection
against respective optimal solutions (Tab. 2). For the distance com-
putation, we construct the full bipartite graph that spans connections
between all pairs of samples from different time steps. For the se-
lection, we try all possible time step selection combinations (this
also uses our optimization of only re-evaluating changed parts of the
selection). As these approaches are significantly more costly than

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

128 256 512 1k 2k 4k 8k 16k 32k 64k 128k256k

sample count

10−2

10−1

100

101

102

103

104

105

tim
e

(in
se

co
nd

s)

0s
0s

0s
1s

5s
15s

47s
141s

407s
1031s

2523s
6302s

0s

1s

7s

57s

323s

1991s

13537s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

av
er

ag
e

de
vi

at
io

n
ra

tio

0.1756

0.1324

0.0924
0.0756

0.0635
0.0465

0.03730.03230.02580.0195
0.0106

Figure 7: Timings (dark gray, solid: Delaunay triangulation, dotted:
full graph) and accuracy (red, w.r.t. 256k results) for different num-
bers of samples with the Supernova data set. The green line depicts
the sample count we use throughout this paper.

ours, we uniformly reduce the number of considered time steps. For
the distance computation, our Delaunay graph-based approach is
much faster in comparison to the reference complete bipartite graph
(Tab. 2, time del. vs. time com.), while at the same time both average
and maximum deviation are low (Tab. 2, ∆d and maxd). Regarding
the selection, even when only choosing |S|= 6 time steps of a set
of 60, this already amounts to

(60
6
)
≈ 50M possible configurations.

This leads to timing differences of several orders of magnitude of
the full solution against our approximation (Tab. 2, time sto. vs. time
full). Still, the achieved evaluation value γ(S) of the approximation is
very close to the reference solution (Tab. 2, com.& sto.). Also, using
Delaunay flow graphs leads to basically the same selection results
as complete flow graphs (Tab. 2, del. & full). The combination of
both our approaches results in comparable quality w.r.t. the optimal
solution, yet requires significantly less time (Tab. 2, del. & sto.).

Next, we evaluate the scaling of distance computations with dif-
ferent numbers of samples |V |. Fig. 7 shows both the deviation
of different sample counts to a reference with 256k samples (red
line) as well as the respective timings (dark gray) on a logarithmic
scale. Our Delaunay-based approach performs significantly faster in
comparison to the full graph (solid versus dotted line), with the gap
widening with an increasing sample count (i.e., 4k samples with a
complete graph takes approximately as long as 256k samples with
our Delaunay-based graph). Also, the deviation to the reference con-
tinuously decreases with more samples. More than 80% of the total
distance compute time is spent by the minimum-cost flow solver,
while the remainder is almost exclusively due to Delaunay meshing.

(d) Comparison against Element-based Distance (Fig. 8). To
compare the outcome of the flow- and the element-based distance
metric, we adjust the transfer function to only show the “hull” of the
Supernova data set (Fig. 8). The distance plots show that the flow-
based metric leads to gradual changes when comparing a time step
against its predecessors, while for the element-based metrics this
transition is very sharp (e.g., time steps 58 and 59 have one of the
highest assigned mutual distances due to their high individual mass,
yet they are very close in shape and position). The reason for that is
that for the element-based distance even small shifts from one time
step to the other yield basically the same results as two completely
unrelated time steps if they only exhibit little overlap. In contrast,

t=16

t=58

t=59

slice view

shown time step pairs

(a) flow-based, S4 = {7,19,33,50} (b) element-based, S4 = {0,1,58,59}

5Jets (|S|= 12, 1) Bottle (|S|= 6, 2) Supernova (|S|= 4, 4a)

λ2 (|S|= 4, 4b) Jet (|S|= 4, 4c) Droplet (|S|= 16, 10)

(c) element-based selection w/ same |S| as in flow-based examples

Figure 8: (a) Flow- and (b) element-based distances for the “hull”
of the Supernova data set. In (a, bottom left), a slice view for three
selected time steps is shown to investigate a detected similar process.
(c) Element-based selection results for all data sets.

our flow-based metric detects (a series of) structurally similar time
steps much more robustly. This is exemplified in Fig. 8a (bottom
left): time steps 58 and 59 are very similar, and while the flow-based
metric recognizes this, the element-based metric finds them to be
completely different. From the distance plot of the flow-based metric
(a), we further detect a similar process running approximately 40
time steps apart (dark line in the distance plot). Looking at time
steps 16 and 58/59 indicates that this is due to a similarly shaped and
oriented hull. Differences in the computed distances also show in
the selection: while the flow-based distances lead to a fairly regular
selection, reflecting the fairly even movement (see accompanying
video), the element-based distances are not particularly expressive,
leading to the selection of two time steps in the very beginning and
end. This is due to the fact that these exhibit a relatively high total
mass, which results in higher element-based distances overall when
there is little overlap between the time steps. These issues can be
seen to a different extent across all data sets (Fig. 8c).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

(a) single (img) (b) over (img) (c) our (img) (d) our (vol)

Figure 9: Different approaches to visualize the selected timesteps:
(a) individually, (b) blending images with the over-operator and (c)
our compositing approach, and (d) ray-space compositing.

(e) Temporal Compositing (Fig. 9). We now compare different
compositing approaches. Side-by-side renderings avoid temporal
occlusion from other time steps [WS03]), yet relative positioning
is hard to assess (Fig. 9a). Blending the renderings with the over-
operator in image space also cannot achieve a correct impression of
involved depth relations (b). Our compositing approach on images
shares the same weakness, yet yields a clearer view on the details
of each involved data set (c). Our ray-space compositing approach
combines volumes during raycasting, and allows for correct depth
assessment, supported by shading and shadowing (d).

(f) Discussion of Limitations and Extensibility. As we only
consider surrounding selected time steps for coverage, our selection
currently does not explicitly account for recurrent processes. While
the user can easily detect such instances visually via our distance
plot, reflecting this in the selection remains for future work. Also,
while the integrated visualization allows to directly compare the
spatial extent of different time steps, it generally does not scale
to more than a couple of composited time steps due to temporal
occlusion. However, this heavily depends on the data set: for λ2
which is structurally complex for each individual time step already
(Fig. 4b), a larger number of time steps both results in significant
occlusion and visual clutter. In contrast, the Droplet data set due to
its clear and sparse structure can take a much higher number of time
steps (cf. Fig. 10). While a comparably high number of selected time
steps is useful for the analysis of the 5Jets data set as well, temporal
occlusion occurs for processes happening in the same spatial area at
different points in time (Fig. 1). However, our approach allows to
circumvent this in several ways: (1) similarity charts already give
indications of such occurrences, (2) renderings of individual time
steps are additionally shown, and (3) selections are computed with
|S| ∈ {1 . . .σ} time steps such that the number of shown time step |S|
can be interactively adjusted. While picking in the similarity charts
to select time steps for visualization is supported already, more ad-
vanced interaction possibilities could further be added for improved
visual analysis. Furthermore, although our Delaunay-triangulated
graph design proved to be very efficient for distance computation,
it is still the major cost factor in our approach due to the relatively
high cost of the flow solver. However, as demonstrated above, our
progressive approach mitigates by delivering good approximations
of the final result early with few computed distances. Our approach
could also be used in in situ and streaming application scenarios
(cf. Sec. 3b). Conceptually, it works directly by using an input stream
as drop-in replacement for adaptive data loading ((ii) instead of (i)
in Alg. 1). However, changes are required when the total size of the
incoming data becomes prohibitive to store in full (i.e., |T∗| ≤ c for
some capacity limit c). To address this, an adjusted version of our
progressive loading scheme (Sec. 3c) could be used that adaptively

Figure 10: Combined rendering of the relatively sparse Droplet data
set with comparably many selected time steps (|S|= 16).

updates our working set T∗ whenever a new batch of time steps ∆T
comes in: T∗← ADAPTIVESTORAGE(c,T∗∪∆T,D).

8. Conclusion

We presented our approach to adaptively select and visualize time
steps from time-dependent volume data for an integrated and com-
prehensive visualization. We directly operate on the volume repre-
sentation, and require no domain or problem-specific knowledge
(like for feature extraction). Our reduced set of selected time steps
not only saves cost with respect to render time and storage, but also
allows to show both spatial structure and temporal development in
one rendering. The selection is employs a flow-based technique to
determine meaningful distances between time steps. Both for dis-
tance computation and selection we present accelerated approaches
that are significantly faster yet yield almost identical results w.r.t.
reference solutions. We also compute selection sets consisting of
different numbers of time steps alongside to support interactive
exploration. Our approach further supports the adaptive progres-
sive incorporation of new time steps, which achieves meaningful
preliminary results very quickly (that are then further refined in
the following). We show both individual and integrated renderings
of the selected time steps, and visualize selections and computed
distances via our new similarity chart.

For future work, we aim to apply our approach to in-situ visual-
ization scenarios as outlined above. We want to further experiment
with other (heuristic) solvers that might deliver higher performance
with our flow graph setup. Flexibly adapting the number of sam-
ples taken from the data for distance computation could also lead
to efficiency improvements. Additionally, we plan to account for
detected recurrent processes in our selection, and extend interaction
possibilities for improved explorative visual analysis.

Acknowledgments

The authors would like to thank the German Research Foun-
dation (DFG) for supporting the project within project A02 of
SFB/Transregio 161 and the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

S. Frey & T. Ertl / Flow-based Temporal Selection for Interactive Volume Visualization

References
[AFM06] AKIBA H., FOUT N., MA K.-L.: Simultaneous classification

of time-varying volume data based on the time histogram. EUROVIS’06,
Eurographics Association, pp. 171–178. 2

[BDA∗16] BACH B., DRAGICEVIC P., ARCHAMBAULT D., HURTER C.,
CARPENDALE S.: A descriptive framework for temporal data visualiza-
tions based on generalized space-time cubes. Computer Graphics Forum
(2016), n/a–n/a. 2

[BvdPPH11] BONNEEL N., VAN DE PANNE M., PARIS S., HEIDRICH
W.: Displacement interpolation using lagrangian mass transport. ACM
Trans. Graph. 30, 6 (2011), 158:1–158:12. 2

[BVMG08] BALABANIAN J.-P., VIOLA I., MÖLLER T., GRÖLLER
E.: Temporal styles for time-varying volume data. In Proceedings of
3DPVT’08 - the Fourth International Symposium on 3D Data Processing,
Visualization and Transmission (June 2008), Gumhold S., Kosecka J.,
Staadt O., (Eds.), pp. 81–89. 2

[CDS12] CHENG S.-W., DEY T. K., SHEWCHUK J.: Delaunay Mesh
Generation, 1st ed. Chapman & Hall/CRC, 2012. 4

[CM10] CORREA C. D., MA K.-L.: Dynamic video narratives. ACM
Trans. Graph. 29, 4 (2010), 88:1–88:9. 3

[FMHC07] FANG Z., MÖLLER T., HAMARNEH G., CELLER A.: Visu-
alization and exploration of time-varying medical image data sets. In
Proceedings of Graphics Interface 2007 (New York, NY, USA, 2007), GI
’07, ACM, pp. 281–288. 2

[FSE12] FREY S., SADLO F., ERTL T.: Visualization of temporal similar-
ity in field data. IEEE TVCG 18 (2012), 2023–2032. 2

[Goo15] GOOGLE: Google Optimization Tools, 2015. 4

[GT90] GOLDBERG A. V., TARJAN R. E.: Finding minimum-cost cir-
culations by successive approximation. Math. Oper. Res. 15, 3 (1990),
430–466. 2, 4

[HKRs∗06] HADWIGER M., KNISS J. M., REZK-SALAMA C.,
WEISKOPF D., ENGEL K.: Real-time Volume Graphics. A. K. Peters,
Ltd., Natick, MA, USA, 2006. 2

[HLNW11] HLAWATSCH M., LEUBE P., NOWAK W., WEISKOPF D.:
Flow radar glyphs & static visualization of unsteady flow with uncertainty.
IEEE TVCG 17, 12 (2011), 1949–1958. 2

[JEG12] JANG Y., EBERT D., GAITHER K.: Time-varying data visualiza-
tion using functional representations. IEEE TVCG 18, 3 (2012), 421–433.
2

[JKM01] JANKUN-KELLY T. J., MA K.-L.: A study of transfer function
generation for time-varying volume data. In Eurographics Conference on
Volume Graphics (2001), VG’01, pp. 51–66. 2

[JPT15] JAMIN C., PION S., TEILLAUD M.: 3D triangulations. In CGAL
User and Reference Manual, 4.6.2 ed. CGAL Editorial Board, 2015. 4

[JR05] JOSHI A., RHEINGANS P.: Illustration-inspired techniques for
visualizing time-varying data. In Visualization, 2005. VIS 05. IEEE
(2005), pp. 679–686. 2

[JR08] JOSHI A., RHEINGANS P.: Evaluation of illustration-inspired
techniques for time-varying data visualization. Computer Graphics Forum
27, 3 (2008), 999–1006. 2

[JS06] JI G., SHEN H.-W.: Feature tracking using earth mover’s distance
and global optimization. Pacific Graphics (2006). 2

[KH13] KEHRER J., HAUSER H.: Visualization and visual analysis of
multifaceted scientific data: A survey. IEEE TVCG 19, 3 (2013), 495–513.
2

[LS08] LU A., SHEN H.-W.: Interactive storyboard for overall time-
varying data visualization. In Visualization Symposium, 2008. PacificVIS
’08. IEEE Pacific (2008), pp. 143–150. 2

[LS09a] LEE T.-Y., SHEN H.-W.: Visualization and exploration of tem-
poral trend relationships in multivariate time-varying data. IEEE TVCG
15, 6 (2009), 1359–1366. 2

[LS09b] LEE T.-Y., SHEN H.-W.: Visualizing time-varying features with
tac-based distance fields. In Visualization Symposium, 2009. PacificVis

’09. IEEE Pacific (2009), pp. 1–8. 2

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R., POST F. H.,
CHEN M.: Over two decades of integration-based, geometric flow visual-
ization. Computer Graphics Forum 29, 6 (2010), 1807–1829. 2

[NTN15] NARAYANAN V., THOMAS D. M., NATARAJAN V.: Distance
between extremum graphs. In IEEE Pacific Visualization Symposium
(2015), pp. 263–270. 2

[PLB∗01] PFISTER H., LORENSEN B., BAJAJ C., KINDLMANN G.,
SCHROEDER W., AVILA L. S., MARTIN K., MACHIRAJU R., LEE
J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21, 3
(2001), 16–22. 2

[PVH∗03] POST F. H., VROLIJK B., HAUSER H., LARAMEE R. S.,
DOLEISCH H.: The state of the art in flow visualisation: Feature extraction
and tracking. Computer Graphics Forum 22, 4 (2003), 775–792. 2

[RTG00] RUBNER Y., TOMASI C., GUIBAS L.: The earth mover’s dis-
tance as a metric for image retrieval. International Journal of Computer
Vision 40, 2 (2000), 99–121. 2

[SB10] SESHADRINATHAN K., BOVIK A. C.: Motion tuned spatio-
temporal quality assessment of natural videos. IEEE Transactions on
Image Processing 19, 2 (2010), 335–350. 3

[SW97] SILVER D., WANG X.: Tracking and visualizing turbulent 3D
features. IEEE TVCG 3, 2 (1997), 129–141. 2

[SWC∗08] SCHNEIDER D., WIEBEL A., CARR H., HLAWITSCHKA M.,
SCHEUERMANN G.: Interactive comparison of scalar fields based on
largest contours with applications to flow visualization. IEEE TVCG 14,
6 (2008), 1475–1482. 2

[SZM∗14] SHIH M., ZHANG Y., MA K.-L., SITARAMAN J., MAVRIPLIS
D.: Out-of-core visualization of time-varying hybrid-grid volume data.
In Large Data Analysis and Visualization, 2014 IEEE 4th Symposium on
(2014), pp. 93–100. 2

[TLS12] TONG X., LEE T.-Y., SHEN H.-W.: Salient time steps selection
from large scale time-varying data sets with dynamic time warping. In
Large Data Analysis and Visualization (LDAV), 2012 IEEE Symposium
on (2012), pp. 49–56. 2

[vPOBB∗11] VAN PELT R., OLIVAN BESCOS J., BREEUWER M.,
CLOUGH R., GROLLER M., TER HAAR ROMENY B., VILANOVA A.:
Interactive virtual probing of 4D MRI blood-flow. IEEE TVCG 17, 12
(2011), 2153–2162. 2

[VWJ∗13] VELTEN A., WU D., JARABO A., MASIA B., BARSI C.,
JOSHI C., LAWSON E., BAWENDI M., GUTIERREZ D., RASKAR R.:
Femto-photography: Capturing and visualizing the propagation of light.
ACM Trans. Graph. 32, 4 (2013), 44:1–44:8. 3, 7

[WCBP12] WIDANAGAMAACHCHI W., CHRISTENSEN C., BREMER P.-
T., PASCUCCI V.: Interactive exploration of large-scale time-varying data
using dynamic tracking graphs. In Large Data Analysis and Visualization
(LDAV), 2012 IEEE Symposium on (2012), pp. 9–17. 2

[WDC∗07] WEBER G., DILLARD S., CARR H., PASCUCCI V., HAMANN
B.: Topology-controlled volume rendering. IEEE TVCG 13, 2 (2007),
330–341. 2

[WS03] WOODRING J., SHEN H.-W.: Chronovolumes: A direct rendering
technique for visualizing time-varying data. In Proceedings of the 2003
Eurographics/IEEE TVCG Workshop on Volume Graphics (New York,
NY, USA, 2003), VG ’03, ACM, pp. 27–34. 2, 3, 6, 10

[WS09] WOODRING J., SHEN H.-W.: Semi-automatic time-series trans-
fer functions via temporal clustering and sequencing. Computer Graphics
Forum 28, 3 (2009), 791–798. 2

[WWS03] WOODRING J., WANG C., SHEN H.-W.: High dimensional
direct rendering of time-varying volumetric data. In Visualization, 2003.
VIS 2003. IEEE (2003), pp. 417–424. 2

[WYM08] WANG C., YU H., MA K.-L.: Importance-driven time-varying
data visualization. IEEE TVCG 14, 6 (2008), 1547–1554. 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

