
Progressive Direct Volume-to-Volume Transformation

Steffen Frey and Thomas Ertl

Fig. 1: Automatic direct volumetric transformation of the Chameleon (red, 1024×1024×1080) into the Zeiss data set (blue, 6803).

Abstract— We present a novel technique to generate transformations between arbitrary volumes, providing both expressive distances
and smooth interpolates. In contrast to conventional morphing or warping approaches, our technique requires no user guidance,
intermediate representations (like extracted features), or blending, and imposes no restrictions regarding shape or structure. Our
technique operates directly on the volumetric data representation, and while linear programming approaches could solve the underlying
problem optimally, their polynomial complexity makes them infeasible for high-resolution volumes. We therefore propose a progressive
refinement approach designed for parallel execution that is able to quickly deliver approximate results that are iteratively improved
toward the optimum. On this basis, we further present a new approach for the streaming selection of time steps in temporal data that
allows for the reconstruction of the full sequence with a user-specified error bound. We finally demonstrate the utility of our technique
for different applications, compare our approach against alternatives, and evaluate its characteristics with a variety of different data sets.

Index Terms—Volume transformation, Volume visualization, progressive, automatic, parallel, time-varying data, streaming data

1 INTRODUCTION

Advances in parallel computing systems for simulations and high-
accuracy measurement techniques drive the generation of volume data
sets with increasing resolution in both time and space. Collections
of volumes are not only generated as times series data (e.g., from a
simulation run), but can also belong to an ensemble (e.g., from a param-
eter study). Putting different volumes into relation for visual analysis
or difference quantification becomes increasingly important and is an
active field of research. Here, one promising approach is to create
transformations between volumes to both localize and (both visually
and numerically) quantify differences. While numerous approaches
for volume warping and morphing have been presented, they are not
applicable automatically to arbitrary volumes. They are often targeted
toward a specific application scenario allowing only certain types of
transformations, and require domain knowledge (e.g., via the detec-
tion of a skeleton or certain features), and/or manual user selection.
In particular, older approaches typically resort to cross-dissolving to
be able to generate smooth transitions. Instead, to be able to handle
arbitrary volumes, we regard volumes directly as density distributions
that are transformed into each other. This may be formulated as a
transportation problem (i.e., an individual assignment of each mass
unit in the volume distribution), which is typically solved via linear
programming. However, their high computational complexity prohibits
the direct handling of high-resolution volumes.

Consequently, these previous approaches are not able to generate

• Steffen Frey and Thomas Ertl are with the University of Stuttgart.
E-mail: {steffen.frey‖thomas.ertl}@visus.uni-stuttgart.de.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

high-quality transformations between arbitrary high-resolution volumes
with no previous knowledge or user adjustment required. To fill this gap,
we present a progressive algorithm that quickly computes meaningful
transformations between high-resolution volumes (i.e., the mapping
of mass/density elements from one volume to the other), iteratively
refining by exchanging assigned mass elements. To achieve high per-
formance, we both employ bounding box-based acceleration and an
implementation that is designed for parallel execution without the need
for explicit synchronization. We demonstrate that our approach pro-
vides a useful basis for a diverse set of applications, including temporal
reduction, temporal analysis, and similarity sorting of ensembles.

In the remainder of this paper, after a review of related work (Sec. 2),
we then discuss our main contributions:

• we formulate the volume-to-volume transformation problem di-
rectly based on density distributions without requiring any domain
knowledge or user guidance,

• and propose a progressive approach to solve it with a particular
focus on efficient parallel execution (Sec. 3).

• On this basis, we introduce a new technique for the streaming se-
lection of time steps in temporal data that guarantees the complete
reconstruction within a user-specified error bound (Sec. 4).

• We evaluate the characteristics of our approach, apply it to various
data sets and use cases, and compare against alternatives (Sec. 5).

• We then discuss its properties and limitations in Sec. 6.
We finally conclude our work in Sec. 7.

2 RELATED WORK

Volume Warping, Morphing, and Deformation. Gomes et al. [19]
define warping as a transformation on a graphical object, while mor-
phing specifically depicts the warping between two objects. Most
morphing or warping approaches beyond cross-dissolving are feature-
based, i.e., they require prior automatic detection or manual placement
of control points [29]. The quality and applicability of such techniques



strongly depends on geometric and topological properties [26]. Many
early methods for volumes were ports of techniques for images [10].
Lerios et al. [29] first do a feature-based warping between two input
volumes (an extension of Beier and Neely’s [6] image warping tech-
nique to 3D), and then rely on blending the resulting warped volumes
to achieve a smooth transition. User tweaking is required to ensure
appropriate intermediate objects. He et al. [21] morph between two
volumetric data sets via interpolation in the wavelet domain. Bai et
al. [3] present an registration-based segmentation method via elastic
warping of surfaces to match the anatomy of mice. Fang et al. [13]
introduce landmark-based volume deformation, whereas landmarks
represent the important geometric and/or biological features (we com-
pare against an implementation of this approach in Sec. 5.4). Lin et
al. [30] discuss load balancing for distributed volume morphing and
rendering. Rhee et al. [35] create anatomically accurate deformations
of body regions by forming correspondences via template volumes. For
instance, Correa et al. [11] transform volumetric objects to generate
illustrative visualizations, employing physically inspired constraints
in the process. Balmelli et al. [5] use volume warping to optimize the
extraction of isosurfaces by emphasizing areas of interest.

Surface morphing establishes a correspondence between two sur-
faces to interpolates in-between. However, issues arise with surfaces
if they differ in topology. Liu et al [31] focus on improving geometric
consistency. Staten et al. [42] compare mesh morphing methods for
3D shape optimization. For automatic design optimization, Sieger et
al. [40] employ triharmonic radial basis functions to morph meshes
from simulation into their underlying CAD model. Sanchez et al. [37]
employ user-controlled metamorphosis between functionally-based
shape models for morphological shape design. For sparse volumetric
deformation, Willcocks and Li [46] approximate topology through with
the goal to improve the robustness of volume skeletonization.

EMD and the Transportation Problem. To the best of our knowl-
edge, our proposed technique is the first to directly employ the trans-
portation formulation for generating transformations between pairs of
volumes. It is related to the earth mover’s distance (EMD, also known
as the Wasserstein metric), and determines the minimum cost of turning
one distribution into the other. It is particularly popular in computer
vision to quantify distances between color histograms, e.g., for image
retrieval [36]. For rendering, Bonneel et al. [7] decompose distribu-
tions (like BRDFs, environment maps, stipple patterns, etc.) into radial
basis functions, and then apply partial transport that independently
considers different frequency bands. These applications only consider
distributions consisting of a comparably small number of elements.
The EMD basically involves a transportation problem that is typically
solved via linear programming. A popular approach with numerous
variations is the cost-scaling push-relabel algorithm [18]. It maintains a
preflow and gradually converts it into a maximum flow by moving flow
locally between neighboring vertices using push operations under the
guidance of an admissible network maintained by relabel operations.
In Sec. 5.3, we evaluate and compare our approach against an efficient
implementation of a minimum-cost flow algorithm [20]. While it finds
an optimal solution (i.e., one with minimal associated cost), the in-
volved polynomial complexity makes it infeasible to directly transform
high-resolution volumes. Another approach is to use a heuristic to
find a valid solution quickly. A commonly used method to efficiently
determine approximate solutions is Vogel’s Approximation Method
(VAM) [34]: it iteratively creates assignments for the source or tar-
get element that exhibits the largest discrepancy between the best and
the second best solution. However, it does not perform very well in
terms of quality for our volume transformation problem (cf. Sec. 5.3).
Loosely related, Optical Flow determines a field of 2D displacement
vectors moving points between frames to accommodate for changes
from object or camera movement (e.g., [8]). It relies on several assump-
tions, including static pixel intensities and the similarity of motion of
neighboring pixels, none of which apply to our approach.

Visualization and Processing of Volume Data Sequences. Bach
et al. [2] review temporal data visualization techniques as operations
performed on a space-time cube. In their taxonomy, we fit into “filling”
(sub-category of “time interpolation”), i.e., the transformation of a set

Algorithm 1 Overview on our progressive volume transformation
approach (‖ depicts parallel execution).

1: procedure VOLTRANS (SEC. 3) . (Sec. 3)
2: create initial assignment . (Sec. 3.1)
3: while termination criterion not met do . (Sec. 3.4)
4: ‖ generate exchange plan . (Sec. 3.2)
5: ‖ execute exchange plan . (Sec. 3.3)

6: create intermediate volumes, if required . (Sec. 3.5)

of disconnected space-time objects into a fully connected space-time
object. Woodring and Shen presented Chronovolumes, a static, direct
rendering technique that integrates all time-varying data over time into
one volume [47]. Jang et al. [24] propose functional representations and
an efficient encoding technique to improve the rendering performance
with time-varying data. Balabian et al. [4] employ temporal transfer
functions and compositors, e.g., to highlight areas of high change. Lee
and Shen [27] identify and visualize trend relationships in multivariate
time-varying data. Frey et al. [16] employ similarity matrices to detect
and explore similarity in the temporal variation of field data.

While we directly compare density distributions, a large body of
work in time-dependent volume visualization is based on the extraction
of features. Widanagamaachchi et al. [45] employ feature tracking
graphs. Lee and Shen [28] use time activity curves (TAC) to visualize
time-varying features and their motion. TACs were also used by Fang et
al. [14] to analyze volume differences for medical applications. Wang
et al. [44] derive an importance curve for each data block based on
conditional entropy, characterize its temporal behavior, and cluster
curves to classify the underlying data. Silver et al. [41] isolate and track
representations of regions of interest. Schneider et al. [38] compare
scalar fields based on contours. Lu and Shen [32] propose interactive
storyboards composed of volume renderings and descriptive geometric
primitives generated via data analysis. Our approach can quantify
the difference between volume data sets, which could be utilized for
comparative visualization (e.g., via integration into VisTrails [9]).

On the basis of our volume transformation technique, we propose
an application for the temporal reduction of volume data sets. Tong et
al. [43] compute the distance between data sets via different metrics
(among others, using the EMD to assess the similarity of clouds in
longitudinal direction), and employ dynamic programming to select
interesting time steps. Wang et al. [44] partition the time range into
uniformly sized segments and select one time step from each segment
based on previously extracted importance values. For in-situ visualiza-
tion, Fernandes et al. [15] use an intermediate abstraction of raycasting
samples (composited clusters of samples along view rays), and use an
efficient representation to store time-dependent simulation data.

3 PARALLEL VOLUME TRANSFORMATION

We directly compute the transformation between two volumes by con-
sidering them as (3D) distributions. These distributions can either be
taken directly via their (density) values, or may undergo a transfer func-
tion mapping (R→ R) first. In the following, we assume that they are
represented by sets of discrete points A and Ω, e.g., from CT scans, sim-
ulations, etc. Arbitrary (continuous) data can be used via resampling.
We denote samples α ∈ A as source samples, and samples ω ∈Ω as tar-
get samples. Each sample has an attached position p(·) and mass m(·).
For now, we assume a balanced problem (∑α∈A m(α) = ∑α∈A m(ω)).
We then determine a weighted mapping F : A→M Ω from A to Ω. The
associated cost of such an assignment F is determined based on the
Euclidean distance d(α,ω) = |p(α)− p(ω)| between samples:

γ(F) = ∑
α∈A

∑
ω∈F(α)

mα→ω ·d(α,ω)2, (1)

with mα→ω denoting the respective weight (or mass) associated with
an individual assignment. On this basis, the goal of our approach is to
determine a mapping F to that yields the minimum for γ(·).While F can
be used to generate transitions between volumes, γ(F) quantifies the
distance between them. We normalize the masses (such that ∑m = 1)



F(α0)
+(ω0, m̌)

−(ω1, m̌)

F(α1)
+(ω1, m̌)

−(ω2, m̌)

. . .
F(αn−1)
+(ωn−1, m̌)

−(ω0, m̌)

Fig. 2: Planning creates exchange sequence for source elements α

(Sec. 3.2). During exchange (Sec. 3.3), for each α one target element
ω is determined with associated mass m̌, and passed around circularly.

and the positions (cf. Sec. 3.1) to improve the expressiveness of γ(·).
For instance, the distance of a Dirac delta function on the left and the
right border of the domain results in γ(·)≈ 1, independent of the extent
of the domain or the height of the pulse. Eq. 1 can be regarded as an
instance of the transportation problem [1]. While there are different
types of linear programming approaches to solve such problems, they
do not fulfill our requirements regarding quality or performance for
transforming high-resolution volumes (cf. Sec. 5.3).

Therefore, we propose a new approach (outlined in Alg. 1) that
exhibits useful properties for various applications (cf. Sec. 6). We
first quickly generate an already valid assignment F (Sec. 3.1). Our
algorithm works on the basic idea of source samples α swapping
assigned target samples ω . We aim to accomplish this such that it can
be run efficiently in parallel without requiring atomics or mutexes.For
this purpose, we first generate an exchange plan consisting of mutually
exclusive subsets of A (Sec. 3.2). We then execute this plan, determining
if and which target nodes to exchange, and carrying out the respective
transfer (Sec. 3.3). Different plans are generated in parallel without
mutual conflicts (however, less recently generated plans typically lead
to fewer exchanges, cf. Sec. 5). Our algorithm carries out multiple
iterations of planning and exchange, until some kind of termination
criterion is reached (Sec. 3.4). Finally, we create intermediate volumes
from determined assignment F (Sec. 3.5).

3.1 Initialization
To generate a valid initial assignment, we first account for different
total masses in the source and target volume (i.e., in general m(A) =
∑A m(α) 6=m(Ω) =∑Ω m(ω), we represent masses as integers to avoid
issues due to floating point arithmetic). To equalize the total sum of
masses m(A) and m(Ω), we add |m(Ω)−m(A)| virtual mass elements
to the side with the lower value (we assume m(A) < m(Ω) for the
discussion below). Sampling is based on the mass distribution m(·), i.e.,
the probability of taking a sample from element α ∈ A is proportional to
its mass m(α). We memorize how many elements have been added to
each α , and during interpolation, we gradually reduce its contribution
to zero (cf. Sec. 3.5). For the evaluation (Eq. 1), virtual mass elements
are treated like standard mass elements. We then generate an initial
assignment F by creating a shuffled list of all α ∈ A and randomly
assigning elements from Ω to α until m(α) is matched. We assign the
respective ω with as much mass as possible, i.e., max(m∗(α,m∗(ω)),
where m∗(·) depicts the mass that has not been assigned yet.

While we concentrate our discussion in this paper on regular grids,
our approach works directly on samples (or points) and imposes no
restrictions on the underlying data representation (apart from recon-
struction, cf. Sec. 3.5). For regular grids with resolution r = (rx,ry,rz)
and voxel extents δ = (δx,δy,δz), we initialize respective element po-
sitions from grid cells as follows. We compute the maximum domain
extent via emax = max((δ A,δ Ω)× (rA,rΩ)T ), and initialize the posi-
tion of each α with index χ = (x,y,z) by p(α) = χ×δ T/emax (ω accord-
ingly). This transformation of positions is reverted when generating
the intermediate volume (cf. Sec. 3.5). Arbitrary volume representation
could be handled either via regular resampling or a combination of
inverse transform sampling (for continuous representations) and density
estimation for reconstruction. While the alignment of volumes only
has negligible impact on the resulting assignment F according to our
experiments, naturally it heavily influences our distance metric γ(F)
(cf. evaluation in Sec 5.1). This needs to be considered in cases that
rely on this measure for comparison, but have no natural alignment,
e.g., due to differences and shifts during data acquisition (cf. Sec. 5.5).

Algorithm 2 Generating sequences of source elements α ∈ A that are
candidates for the exchange of mass assignments (depicted in Fig. 2).

1: procedure PLAN (SEC. 3.2)
2: A← randomShuffle(A) . shuffle A
3: P←{}, C←{} . initialize plan P and candidates C
4: for all α ∈ A do
5: if C = {} then
6: C←{α}
7: continue
8: ∆← 0,c′← α,b← None
9: for all c ∈←−C do . traverse C in reverse order

10: ∆← ∆+δbbox(c,c′) . estimated improvement from c to c′

11: if ∆+δbbox(α,c)< 0 then
12: P← P+{c,c′, . . . ,back(C),α} . add sequence to plan P
13: C←{}
14: break
15: else if ∆ < 0 then
16: b← ExtendCandidates
17: c′← c
18: if b = ExtendCandidates∧C 6= {} then
19: C←C+α

20: procedure δBBOX(α0, α1) . estimate transfer improvement α0→ α1
21: (∆min

0 ,∆max
0 )← dminmax(α0,bbox(α0))

22: (∆min
1 ,∆max

1 )← dminmax(α1,bbox(α0))

23: return mix(∆min
1 ,∆max

1 , rng[0,1])−mix(∆max
0 ,∆min

0 , rng[0,1])

3.2 Exchange Plan

Next, we generate an exchange plan P consisting of mutually exclusive
subsets of A that specify which αs are considered for an exchange (and
in which order). These then determine the most beneficial target nodes
ω to circularly transferred to the next node (Fig. 2). All exchanges
take place with m̌, which is determined the smallest respective mass for
any ω . Alg. 2 gives an overview of our approach. Initially, we shuffle
A (Line 2) to be able to create arbitrary sequences. Looping over all
elements α ∈ A, we then generate potential swap sequences (Line 4).
In each iteration of our main loop (Lines 4–19), we determine whether
the current α either completes our candidate set to a sequence with a
potential transfer of points (Lines 11–14), or at least is a promising
extension to our current candidate list C ⊂ A (Lines 15–16). For this,
we iterate over C in back-to-front order (Line 9). Here, we iteratively
estimate the potential benefit ∆ of transferring one mass element from
c ∈ C to the subsequent source node c′ ∈ C (Line 10). This takes
into account the bounding box of the positions of all target nodes
ω ∈ F(α) currently assigned to α (Lines 20–23). Here, the difference
of the maximum possible distance of α0 to its own bounding box
bbox(α0) and the minimum possible distance of α1 to bbox(α0) would
give the theoretically highest improvement when transferring a mass
element from α0 to α1. Instead, we randomly choose a number in
the range between the minimally and maximally possible distance to
a position in the bounding box to avoid cases in which creating plans
for a certain longer (necessary) sequence is prevented by always taking
(eventually unsuccessful) shorter ones (Lines 21 & 22). Using this
in the back-to-front loop over the candidate sequence C, we check
the value for the wrap-around assignment of α to c together with the
sequence evaluation ∆. This allows us to determine whether we already
found a promising candidate set (Line 11). Should this be the case, we
add the respective subsequence of C together with α as one sequence
to our plan P (Line 12), and exit the candidate loop. Second, if at
least the sequence without the wrap-around is promising (Line 15),
we indicate that α will be added to our candidate set if the sequence
cannot be completed in this iteration (Line 16, Lines 18 & 19). We run
multiple (full) instances of PLAN in parallel to utilize multi-core CPUs
without having to partition A and Ω. As we can generate arbitrary swap
sequences of arbitrary length, our approach will eventually achieve the
optimal assignment (i.e., the one with minimum associated cost γ(·)).



Algorithm 3 Checking sequence lists p of plan P w.r.t. whether
distance γ(·) is improved, and carrying out the exchange (cf. Fig. 2).

1: procedure EXCHANGELIST (SEC. 3.3)
2: for p ∈ P do . this can be run in parallel
3: ∆← 0, m̌ = ∞ . initialize exchange value ∆ and mass m̌
4: for i ∈ {0 . . . |p|−1} do
5: (ωi,di,mi)← σ(F(αp(i−1)),αp(i)) . find best candidate
6: m̌←min(m̌,mi)
7: ∆← ∆+di
8: if ∆ < 0 then . check if exchange is beneficial
9: for i ∈ {0 . . .n−1} do . exchange points

10: F(αi)← F(αi)+(ωi, m̌)− (ω(i+1) mod n, m̌)

3.3 Assignment Exchange
Next, we process the exchange sequences p ∈ P created during plan-
ning (Alg. 3). For each p (Line 2), we first determine which ω to
exchange for each contained source element α ∈ p (Lines 3–7). To
determine the best candidate from F(αp(i−1)) for αp(i), we iterate over
all elements in F(αp(i−1)) to find the one with the smallest distance
di (σ(F(αp(i−1)),αp(i)), Line 5). We also determine pointers where
to potentially insert new elements as well as the minimum value of
all assigned masses m̌ (Line 6). Second, if the overall exchange has
been determined to be beneficial (i.e., ∆ < 0, Line 8), we exchange
the respective ωs (Line 9 & 10). We employ arrays instead of a lists
in our implementation, which, while potentially inefficient in terms of
space, is better both for performance and portability. In an exchange,
if the respective ωi is already present, we simply add up the masses.
Otherwise, if the outgoing ωi+1 left open an empty slot (or if another
one has been found), we fill it with ωi, or else we place ωi right after
the last entry. The bounding boxes used by δbbox(·, ·) during planning
are also updated in this process (omitted for clarity in Alg. 3).

3.4 Termination Criterion
Planning and exchanges iteratively refine the assignment F(·) until
we fulfill a certain termination criterion. For this, we implemented
different sub-criteria that may be used in combination, whereas at least
one needs to be fulfilled to exit the iteration loop.
Time. The specified overall time limit is reached.
Distance. The distance metric falls below a certain target value.
User Interrupt. A user may interrupt refinement at any time.

Different criteria are useful for different application scenarios. Time
Limit allows to comply to time budgets in batch scenarios where
many different morphing operations need to be carried out (e.g., for
in-situ scenarios with concurrent simulations). In interactive scenarios,
User Interrupt allows a user to quit refinement if the achieved results
suffices for his purposes. Distance Limit is useful to check whether a
certain distance between two data sets is exceeded (e.g., to assert that
we obey a target distance to the original after reduction, cf. Sec. 4).

3.5 Reconstruction of Intermediate Volumes
For reconstructing intermediate volumes, we do a linear transformation
with parameter σ ∈ [0,1] along the direct path of assignment F from A
to Ω (Fσ=0 = A & Fσ=1 = Ω). As discussed so far, our approach works
directly on samples and does not impose any restrictions on underlying
grid types. However, for reconstruction, we concentrate on regular grids
as they allow for the linear interpolation between resolution (rx,ry,rz)
and voxel spacing (δx,δy,δz). Arbitrary data representations could be
handled in the same way via regular resampling. Alternatively, density
estimation techniques could be employed to reconstruct a volume from
arbitrarily distributed samples (this remains for future work). With our
linear interpolation approach, the resolution of an intermediate volume
is given by (1−σ)(r0

x ,r
0
y ,r

0
z )+σ(r1

x ,r
1
y ,r

1
z ) (δ analogously). Based

on this, we then reconstruct a regular grid from what is essentially a
set of weighted points that is given by the positions in A and Ω and
assignment F . To conform with tri-linear volume interpolation, we
employ a hat filter with the extent of a cell. Its magnitude is scaled by
the respective weight w of the assignment.

Algorithm 4 Selection of time steps S such that the distance of time
steps in between to the intermediate volume is smaller than τdist. Differ-
ent metrics may be used for distance function ∆. Here, we alternatively
employ our flow-based distance metric ∆trans or the RMSE ∆RMSE.

1: procedure TIMESERIESREDUCTION (SEC. 4)
2: S←{0}, t← l, ⊥← 0, >← ∞

3: while back(S) 6= |T |−1 do
4: F ← VOLTRANS(back(S), t,τtime) . time limit τtime
5: for all t∗ ∈ shuffle({back(S)+1, . . . , t−1}) do
6: tmorph← Fσ=(t∗−back(S))/(t−back(S)) . morph in back(S) to t
7: . ∆trans(t0, t1,χ) : γ(VOLTRANS(t0, t1,χ)) (χ : termination)

8: . ∆RMSE(t0, t1) :
√

∑i∈{0...|t0|−1}(mi(t0)−mi(t1))2

9: if ∆(tmorph, t∗,τdist∨ τtime)> τdist then . ∆trans or ∆RMSE
10: >← t
11: break
12: if > 6= t then
13: ⊥← t
14: if ⊥+1 => then . add last conforming time step to selection
15: S← S+(max(⊥,back(S)+1)
16: ⊥← back(S)
17: l← 0.8 · (back(S)−back2(S)) . adjust l via last two selections
18: else if > 6= ∞ then
19: t← (⊥+>)/2
20: else
21: t← t + l

0 1 2 3 4 5 6 7 8

interpolation

…

0 1 time steps   
(selected/interpolated) 8 upper/lower 

bound

≦ 𝜏dist?

9

Fig. 3: Temporal selection of time steps such that time steps in between
are covered by transformed volumes with a deviation bounded by τtarget.

4 ERROR-BOUND TIME STEP SELECTION

Our volume transformation algorithm can (1) interpolate and (2) pro-
vide meaningful distances γ(·) between data sets. We use both prop-
erties to select a set of time steps S from which the whole time series
can be reconstructed without exceeding a user-defined error bound τdist.
This allows to save storage space, and can also indicate the progression
characteristics of a time series. Missing time steps t /∈ S are replaced
by interpolating between surrounding time steps in S (Fig. 3). Our
algorithm selects time steps S from a time series T on the the fly, and
thus could be employed in streaming and in-situ scenarios (Alg. 4).
We initialize S with the first time step, and choose an initial step size
l (Line 2). We then loop over the remaining time time steps (Line 3).
In each iteration, we first generate a transformation F from the last
time step of the selection (back(S)) to the current time step t (Line. 4).
We terminate the refinement when time budget τtime is exceeded. We
now check the distance of all time steps between back(S) and t to their
respective intermediate (Line 5–21). For this, we generate a trans-
formation tmorph for each time step t∗ we compare against (Line 6).
Different metrics may be used depending on the requirements: while
our transformation-based distance metric ∆trans (Line 7) is more ex-
pressive than element-based distances in particular for larger deviations
or thin surfaces (cf. Sec. 5.2), ∆RMSE (Line 8) operating on individual
elements is a popular standard metric that is faster to compute. The
obtained distance ∆ is then compared against the maximally allowed
target value τdist (Line 9). In case of using ∆trans, we exit refinement if
time budget τtime is exceeded or if γ(·) falls below target distance τdist.

In our implementation, we do not proceed time step by time step (as
in streaming data scenarios), but use an adaptive step size l. This saves
transformation computations (and hence processing time) particularly
when only few time steps are selected. If τdist is exceeded for any
time step between back(S) and t∗ (Line 9), we employ bisection to
determine the latest time step that does not violate our criterion (it then
becomes the next selected time step). For this, we maintain a lower



Fig. 4: Interpolation between Chameleon and Mouse to underline structural changes (Fig. 6 shows respective refinement curves).

σ = 0 σ = 0.5, t = 0s σ = 0.5, t = 8s σ = 0.5, t = 64s σ = 0.5, t = 256s σ = 0.5, t = 1024s σ = 1

Fig. 5: Transformation from the Bunny (red, σ = 0) to the Engine (blue, σ = 1). Green volumes at σ = 0.5 show different stages of refinement.

0 100 200 300 400 500 600 700 800

time (in seconds)

0.00

0.05

0.10

0.15

0.20

0.25

γ
(·)

(s
ol

id
lin

es
)

1 threads
2 threads
4 threads

0

5

10

15

20

25
sw

ap
co

un
t(
×

10
00

00
0)

(d
as

he
d

lin
es

)

Chameleon→Mouse
Bunny→Engine

Engine→ G(Engine)
Chameleon→Zeiss

Fig. 6: Refinement of transformations between different data sets.

bound ⊥ and an upper bound > that give the latest acceptable and the
earliest not acceptable time step determined so far (Lines 10 & 13). We
continuously bisect this time range (Line 19) until⊥+1 => (Line 14).
We then add⊥ to the selection S (Line 15), and initialize the step size to
slightly less than the latest gap between selected time steps (Line 17).

5 RESULTS

For our evaluation, we used a machine equipped with a Intel Core
i7-4770 CPU (3.4 GHz) featuring four cores and 16 GB of RAM. Our
renderings were generated with a CUDA-based raycaster with local
lighting and direct shadows. We used a variety of different data sets
from CT scans and simulations. Our used three data structures: posi-
tions (p(·) of A and Ω), deltas (added mass for equalization to α ∈ A
or ω ∈Ω, cf. Sec. 3.1), and assignments (F). The assignment of each
α ∈ A consists of a list of pairs (ω,m), and its storage is typically most
memory-intense. Depending on the data, we use a 4 byte or 8 byte
representation for storing indices and masses. In the following, we eval-
uate the transformation between volumes in detail (Sec. 5.1), compare
against element-based, transport-based, and feature-based alternatives
(Secs. 5.2, 5.3 & 5.4), and demonstrate the utility of our approach for
similarity ordering and time series reduction (Secs. 5.5 & 5.6).

5.1 Transformation between Data Pairs
Our approach creates transitions between arbitrary volumes directly,
automatically, and without prior knowledge. Next, we discuss its char-
acteristics with data from CT scans to which suitable transfer functions
were applied: Chameleon (10242×1080,δxy = 1,δz ≈ 1.38, Figs. 1&
4, left (w/ different transfer functions)), Mouse (10242× 487,δxy =
1,δz ≈ 1.38, Fig. 4, right, both from the UTCT data archive), Zeiss
(6803,δxyz = 1, Fig. 1,right, Daimler AG), Bunny (5122×360,δxyz = 1,
Fig. 5, NLM), and Engine (2563,δxyz = 1, Fig. 5, General Electric).

Qualitative Results. The Chameleon→Zeiss transformation shows
that our approach is able to create smooth transitions between vol-
umes that differ fundamentally in structure (Fig. 1). Structures slowly
and flexibly transform to create new shapes, e.g., how an eye of the
Chameleon becomes a hole of the Zeiss workpiece, and a combination
of its ear and back morph into a cylinder. Naturally, we can also apply
our approach to create transitions between data sets that have some
kind of structural similarity, as exemplified by the Chameleon→Mouse
transformation (Fig. 4). While our approach is not aware of any under-
lying semantics, we can particularly see a smooth deformation between
skulls, that can already be useful to emphasize the structural deforma-
tion. However,the lack of such restrictions also allows parts of the bones
that initially belonged to the tongue of the chameleon now become part
of a leg of the mouse. Hence, while allowing arbitrary transitions yields
high flexibility, some additional constraints could be desirable for a
variety of use cases. For the Chameleon→Mouse transition, such a
restriction could be based on anatomy-aware registration, only allowing
certain parts of the skeleton to be transformed into each other, but not
across. These extra restrictions could be additionally considered by our
approach, yet this remains for future work. Next, we exemplify that
with increasing time for refinement, the transformation becomes less
and less blurry and iteratively forms clear structures (Fig. 5). In this
example, t = 0s shows the result directly after initial assignment. After
8 seconds, we already see distinct transformation shapes, yet they still
look quite blurry. After 64 seconds a lot more refined result is achieved,
and with t = 256s a state is reached that is visually very close to the
“converged” result after a long run time.

Refinement and Performance. For different data sets, the relative
improvement in quality γ(·) is very similar in its rapid convergence, yet
the actual rate differs due to the different workloads induced (Fig. 6).
While the Bunny→Engine transformation sees only smaller changes
after 64 seconds (cf. Fig. 5), it takes roughly three to four times as
long for Chameleon→Mouse (Fig. 4) to reach that state. The swap
count (the number of executed exchanges) declines similarly, i.e., less
exchanges occur per iteration when closer to convergence. The timings
of the individual stages of our algorithm roughly linearly dependent on
the number of source and target elements (|A| and |Ω|, respectively):
Chameleon→Zeiss: |A| ≈ 83M, |Ω| ≈ 70M; Chameleon→Mouse:
|A| ≈ 14M, |Ω| ≈ 6M; Bunny→Engine: |A|= 3M, |Ω| ≈ 1M. The ini-
tialization time ranges between a couple of seconds for Bunny→Engine
and 50 seconds for Chameleon→Mouse. The most time-consuming
step of our approach is planning (i.e., the compilation of sequences
that are promising candidates for a swap). Overall, as indicated by
Fig. 6, the number of of exchanges/swaps decreases during the course
of refinement, and directly with this also the total time to execute them.
Inversely, the time for planning increases (by approximately 20%)
due to the larger candidate set C that needs to be considered to find a
promising exchange sequence (cf. Alg. 2). For Bunny→Engine, the
planning in the beginning takes on average ≈ 250ms for each iteration



Fig. 7: Blending/Cross-dissolving results for Chameleon to Zeiss trans-
formation for σ = 0.3,0.5 and 0.7 (cf. Fig. 1 for our transformation).

t=343

t=124

t=362

γ(A
124, Ω

362 ) = 0.84  
γ

e (A
124, Ω

362 ) = 0.85

γ(A
124, Ω

362 ) = 0.37  
γ

e (A
124, Ω

362 ) = 0.85

time t

tim
e 

t

362

124 343

similarity matrix (w/ γ) dataset renderingsdistances

Fig. 8: Difference between our transformation-based γ(·) and the
element-base distance measure γe(·) for three time steps of the von
Kármán vortex street (distances are normalized w.r.t. the maximum).

(i.e., the generation of four plans in parallel takes about one second),
while the actual exchange takes ≈ 15ms in the beginning (changing
to ≈ 270ms and ≈ 5ms toward the end). For Chameleon→Mouse,
planning takes on average around ≈ 1.25s in the beginning, while the
exchange takes ≈ 75ms (this changes to ≈ 1.5s and ≈ 18ms during
refinement). Chameleon→Zeiss is our most costly transformation: the
planning initially takes ≈ 37s seconds (increasing to ≈ 40s), and the
exchange takes ≈ 7s (decreasing to ≈ 160ms). The chart also exhibits
some small-scale alternating (“wiggling”) behavior in the exchange
counts for multi-threaded runs as plans are generated in parallel, and
the more exchange iterations have taken place since planning, the less
swaps occur (exchange processes happening in between can make some
exchange sequences p obsolete). This also has a significant impact
on thread scaling characteristics. Due to many of these interferences
happening early, scaling behavior is hampered in the beginning (e.g.,
reaching γ(·) = 0.08 for Chameleon→Mouse takes ≈ 237s for one
thread, ≈ 170s for two threads, and ≈ 134s with four threads). Yet,
during the course of refinement a decreasing number of these conflicts
occurs, and we approach linear scaling (for γ(·) = 0.027, ≈ 4000s for
one thread, ≈ 2136s for two threads, and ≈ 1233s with four threads).

5.2 Element-based Distances and Interpolation
In contrast to our approach, element- (or cell-)based transitions consider
each voxel individually without taking into account any type of local or
global neighborhood. First, we compare our transformations against
cross-dissolving, before we look at distance computations. Basically,
cross-dissolving produces a linear interpolation between corresponding
pixels or voxels of two data sets. Respective morphing sequences can
create smooth transitions if the two involved data sets are reasonably
similar and well-aligned. It is used for artistic as well as scientific
purposes. For instance, Chimera, a popular visualization system for
exploratory research and analysis, uses it to generate so-called Morph
Maps between related data sets with the same underlying grids [33].
However, even if extended to arbitrary grids, this cannot capture trans-
lational motion adequately, which is required for larger changes. Fig. 7
exemplifies this by attempting the recreate the transition from Fig. 1 via
fading out source elements A and blending in target elements Ω with
increasing σ . It shows that for distinct data sets, cross-dissolving does
not create the impression of a smooth transformation (e.g., for σ = 0.5,
the two volumes can clearly be distinguished).

To compare our transformation-based against an element-based dis-
tance measure, we consider the velocity magnitude of a von Kármán
vortex street from a CFD simulation (Fig. 8). A von Kármán vortex

10−4 10−3 10−2 10−1 100 101 102

time (in seconds)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

γ
(·)

Bunny→Engine (slice, ×70)

Zeiss→Engine (slice, ×60)

Bunny→Zeiss (slice, ×90)
reached reference

(a) Refinement until reaching the optimum (triangle).

0 5 10 15 20 25 30

time (in seconds)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

γ
(·)

(th
ic

k
lin

es
)

REF (5245s)

REF (3751s)

REF (8566s)

Bunny→Engine (slice, ×3)

Zeiss→Engine (slice, ×4)

Bunny→Zeiss (slice, ×5)

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

w
.r.

t.
R

E
F

&
σ
=

0.
5

(th
in

lin
es

)

VAM (68s)

VAM (43s)

VAM (57s)

(b) Refinement against optimum (ours: solid, REF: dashed, VAM: dotted).

(c) Results with our and simplex method for Bunny→Engine (visually identical).

(d) Results with Vogel’s approximation method for Bunny→Engine.

Fig. 9: Transformation between downsampled slices of Bunny, Engine,
and Zeiss, for (a) demonstrating convergence until optimum, and (b)
comparing against the Simplex Method (REF) and VAM . γ(·) gives the
respective distance between data sets, while RMSE is computed w.r.t.
the optimal solution of REF for reconstructed intermediate σ = 0.5.
Intermediates are shown for Bunny→Engine (c,d).

street is a repeating pattern of swirling vortices caused by the unsteady
separation of fluid flow around blunt objects. Here, time steps t = 0 to
approximately t = 200 cover the buildup phase, with recurrent behavior
occurring afterwards. This also shows in the similarity matrix created
by our approach (Fig. 8 left). We now analyze the qualitative differences
of element-based and transformation-based distances via the similarity
relationship between three points in time (t = 124,343,&362). Al-
though visually and simulation state-wise, time steps (343,362) quite
similar in comparison to (124,362), the element-based distance mea-
sure γe(·) yields roughly the same distance (both ≈ 0.85) because
changes are only considered per voxel, and small translations cannot
be distinguished from larger shifts. In contrast, our distance measure
γ(·) reflects this difference in distance much more adequately (≈ 0.37
vs. ≈ 0.84). However, it also induces significant cost when looking at
the computation of a complete similarity matrix, requiring a total of
4002/2 = 80000 transformations here (γ(t0, t1) = γ(t1, t0)). It took over a
week on a single machine (terminating after 4096 refinement iterations),
while the computation of per-voxel differences for the element-based
metric is in the order of seconds to minutes.

5.3 Comparison against Transport-based Alternatives
Next, we evaluate our exchange-based technique against two funda-
mental approaches for solving the transportation problem.
Simplex Method (Reference) We employ a cost-scaling push-relabel

algorithm: it maintains a preflow and gradually converts it into a
maximum flow by moving flow locally between neighboring vertices



(a) σ = 0 (b) σ = 0.5 (c) σ = 0.8 (d) σ = 1

Fig. 10: Comparison between feature-based morphing (using Locally Affine Shepard (LASM), purple) and our transformation (blue) at the
example of the Engine data set that is bent and contracted via transformation G (orange). Feature points employed for LASM are shown in pink.

γ x =−1 x = 0 x = 1
keep shift revert shift keep shift revert shift keep shift revert shift

y =−1 2.00539 1.37216e-5 1.00589 1.37216e-5 2.0064 1.37216e-5
y = 0 0.999508 1.37216e-5 1.37216e-5 1.00052 1.37216e-5
y = 1 1.99363 1.37216e-5 0.994136 1.37216e-5 1.99464 1.37216e-5

Table 1: Transformations F computed with shifted Ωx,y, distance γ(F)
given w.r.t. kept and reverted shift (w/ Bunny→Engine, cf. Fig. 9).

using push operations under the guidance of an admissible network
maintained by relabel operations [18]. It finds an optimal solution
(with minimal associated cost γ(·)), and is regarded to be one of
the most efficient solvers (we use Google’s implementation [20]).
Its complexity is O(n2 ·m · log(n · c)), where n = |A|+ |Ω| denotes
the number of nodes in the graph, m = |A| · |Ω| gives the number of
edges, and c is the largest induced edge cost (i.e., the largest distance
between positions p(α) and p(ω)).

Vogel’s approximation method (VAM) VAM is considered to yield
good (initial) solutions that are close to the optimum for many trans-
portation problems [23]. It works by taking into account the costs
associated with each route alternative: for each α ∈ A and ω ∈Ω, it
iteratively computes the difference in cost between the best and the
second best alternative and takes the largest one [34].
For evaluation, we consider transformations between Bunny, Zeiss,

and Engine (Fig. 9). To allow for the computation of reference results,
we only consider the downsampled middle slice of each data set. To
evaluate the convergence properties of our approach, we first compute
the reference solution via the Simplex method and let our approach
run until it yields an optimal result (Fig. 9a). As indicated previously
(e.g., Fig. 6), γ(·) rapidly improves in the beginning, with the rate
of improvement decreasing significantly after a while, yet an optimal
result is reached eventually. Using a smaller downsampling ratio, we
investigate more closely our properties in comparison to VAM and the
reference solution, both considering γ(·) (i.e., the distance between
the two chosen data sets based on the currently best assignment F), as
well as the root-mean-square error (RMSE) between the intermediate
images for σ = 0.5 (Fig. 9b). Both metrics indicate that our approach
quickly approaches the optimal solution in a matter of seconds, while
it takes the Simplex Method a long time to reach a result (and becomes
completely infeasible for larger resolutions). We also quickly surpass
the quality achieved by VAM. While VAM generates close-to-optimal
results for many transportation problems [23], the “dense” structure
of our underlying transportation problem is probably unsuitable for
this heuristic. This is also shown in the respective intermediate render-
ings, where the Simplex method and our approach (after a minute with
four threads) produce visually identical results (Fig. 9c), while VAM
produces rather “crumbly” intermediates (Fig. 9d). While, according
to our experiments, the alignment has negligible impact on F , it has
significant impact on the distance between volumes γ(·) (i.e., the as-
signments F remain almost unchanged for shifted volumes, cf. Tab. 1).

5.4 Comparison against Feature-based Morphing

Next, we compare against a feature-based morphing approach dis-
cussed by Fang et al. [13]. While feature points (or landmarks) are
often selected manually, we employed the Shi and Tomasi method for
automatic extraction [39]. We first compute the structure tensor for
each voxel via derivatives obtained from the Sobel operator. From this,

we then compute the eigenvalues (λ1,λ2,λ3) of this tensor. A feature
is detected if min(λ1,λ2,λ3)> 0.1 (selecting corner points with signif-
icant changes in each direction). Applied to the Engine, this yields 166
feature points Θ (pink spheres in Fig. 10a). One critical part of feature-
based approaches is the matching between feature points across data
sets. To avoid introducing errors, we apply an analytic transformation
G both to the Engine and its features:

G : R3→ R3,(αx,αy,αz) 7→ (α
14(αy−0.5)2+0.4
x ,αy,α

2(p.y−0.6)2+0.6
z ),

(2)
with (αx,αy,αz) denoting 3D coordinates. Effectively, G both bends
and contracts the volume (Fig. 10d orange). We consider three different
morphing alternatives:

1. G is directly taken as assignment map F (Fig. 10 orange). Inter-
mediate volumes are generated as outlined in Sec. 3.5.

2. Our transportation-based approach computes F (Fig. 10 blue).
3. Morphs (Fig. 10 purple) are computed via coordinate mapping on

the basis of transformed markers Θσ =(1−σ) ·Θ+σ ·G(Θ). For
this, we employ the Locally Affine Shepard Method (LASM) [13].
In brief, it assumes that a local affine interpolant exists for each
feature point θ ∈Θσ , and employs an energy minimization pro-
cess to construct local interpolants. These interpolants are then
used to map coordinates in the intermediate volume to coordinates
in the source volume. The source volume is accessed with these
coordinates to finally obtain a (morphed) value for each voxel.

First of all, looking at the final morph (i.e., σ = 1, Fig. 10d), it can
be seen that LASM (purple) cannot match the rather complex (non-
linear) transformation, despite the “reference”-quality feature points
(it can only match the bending on the lower but not on the upper part).
Furthermore, changes occur in the “density” of masses both due to the
bending and the contraction: the transformed target volume (orange)
is much denser than the source volume, as visually indicated via its
transparency. However, this is not supported by LASM (or in fact any
morphing method based on the transformation of coordinates), as can
be seen by the unmodified level of transparency in Fig. 10d (purple).
In contrast, by design, our transportation-based approach (blue) exactly
matches the target volume (orange), and smoothly also interpolates
the densities in between. The intermediate volumes for σ = 0.5 and
σ = 0.8 (Fig. 10b and c) show that the LASM smoothly drifts away
from the morph specified by G (indicated by the respective features
points Θσ ). Our transportation-based approach yields a results that
is closer to the specified transformation G, yet it needs to differ as G
does not provide the cost-optimal transformation from source volume
A to target volume Ω = G(A) according to our criterion (i.e., there is a
cheaper assignment F with γ(F)< γ(G) to yield Ω from A).

5.5 Application Example: Similarity Ordering

To exemplify the utility of our approach for the generation of mean-
ingful distances between volumes, we discuss an application to sort a
data ensemble such that transitions between successive data sets are as
smooth as possible. For this, we look at a set of flowers obtained via
CT scans [22] (Fig. 11). We first moved the volumes such that their
barycenter matches (from the positions weighted by their mass). On
this basis, we then use our approach to compute a similarity matrix
containing all mutual distances of the set of flowers (Fig. 11, left). From
this, we can see that, among other factors, object rotation has quite
some impact here. For instance, (d) and (g) have a comparably small
distance, despite their differences in shape. On the contrary, (a) and



(a) Aristroemeria (b) Eustoma Blue (e) Eustoma Purple (f) Tulip (d) Eustoma (g) Viola (c) Rose
0

max
a 
b 
c 
d 
e 
f 
g

a  b  c  d  e   f   g

similarity matrix
Fig. 11: Ordering of flowers to achieve minimal possible distances between successive data sets (data provided by Ijiri et al. [22]).

𝜏dist=0.0024𝜏dist=0.0012

0 10 20 30 40

t𝜏dist=0.0006

Fig. 12: Selections of time steps from the λ2 data set for the purpose of
demonstrating the adaptivity both w.r.t. the underlying data and τdist.

(g) have a relatively large distance, despite some similarities in shape.
However, we can see that the visually most similar flowers also have
a low distance, like (b) and (e). This similarity matrix is then used to
determine an ordering by basically solving a traveling salesman-type
problem (without return to the origin, Fig. 11, right). This provides
a sequence in which each transition is comparably smooth, and many
of the visually most similar pairs are next to each other (e.g., (f) and
(d), (b) and (e)). While more elaborate registration could mitigate this,
we do not necessarily end up with the same or similar types of flowers
next to each other but rather the ones that are similar in their volumetric
representation. For a more type-aware approach, certain features would
have to be extracted, classified, and matched to, e.g., more expressively
compare an open and closed type of Eustoma (e.g., (b) and (d), cf. [22]).

5.6 Application: Time Series Reduction
Next, we evaluate our time series reduction approach (cf. Sec. 4). First,
we demonstrate the adaptivity of the selection at the example of the
λ2 data set (5293, 40 time steps). It contains the λ2 vortex extraction
criterion on the basis of a fluid simulation (Fig. 12). Initially, the data
degrades comparably slowly, and then increasingly quickly decomposes
toward the end. Our selection adapts to this: the small gradual changes
in the beginning can be covered adequately by fewer selected time
steps, while for the rather chaotic behavior toward the end basically no
time steps may be omitted with an acceptable error. Overall, a lower
acceptable error τdist leads to a denser selection of the time series.

We now consider the Droplet data set (2563 with 500 time steps). It
was created with multiphase flow solver FS3D [12], and depicts two
droplets colliding asymmetrically (Fig. 13; courtesy of C. Meister, In-
stitute of Aerospace Thermodynamics, University of Stuttgart, cf. [25]
for details). Here, we chose a comparably high distance threshold τdist
to demonstrate both the high potential for data reduction, as well as
the potential quality impact. The chart in Fig. 13 shows which time
steps are selected, with the respective renderings on top. The distances
to the reference have been computed in a separate run, as during the
actual selection procedure, we are only interested in not exceeding the
distance threshold τdist, and accordingly interrupt refinement as soon
as this is assured. They are consistently below τdist, yet close to this
limit in between (the last segment is an exception as the last time step is
always selected, cf. Sec. 4). The distance of interpolates to the original
data generally gets smaller the closer they are to a selected time step.
In the bottom, we compare renderings of the reference time series in
the middle between two selected time steps to our interpolated volume.
This exemplifies the different types of deviation that can occur. For
t = 41, the shapes are almost identical, yet the droplets do not quite
move linearly towards each other, which means that there is a deviation
in terms of position. Conversely, for t = 241 primarily the shapes differ:
as we interpolate between a state with one connected component of
mass (t = 170) and a state that has largely decomposed into smaller
droplets (t = 312), also the interpolate will slowly decompose, although

t=0 t=82 t=170 t=312 t=499
selected time steps

original

morph

t=41 t=126 t=241 t=405

Fig. 13: Droplet data set selected with comparably high target distance
τtarget = 0.0004 (we used τtime = 120s as termination time limit). This
way, the whole data set of 500 is represented by 5 time steps only, yet
at the cost of decreased quality between selected time steps.

ahead of the real decomposition in the data set. Here, we chose this
coarse target distance τdist for the sake of demonstration of the funda-
mental properties. According to our experiments, significantly reducing
τdist (i.e., ten times smaller and beyond) yields a much denser selection,
but exhibits only minor visual differences to the original. In general,
as already discussed above at the example of λ2, the characteristics of
the underlying data naturally have a big impact on the selection. In the
case of the Droplet data set, the selection nicely segments the different
stages of the simulation (cf. Fig. 13). First, the two droplets move
toward each other, then they go through initial contact and deformation,
before radially splashing in the form of smaller droplets. Particularly
while droplets move largely independently from each other, time steps
need to be selected less densely as they can be approximated nicely
via our linear interpolation (e.g., from t = 305). In contrast, both the
beginning and the end of the initial contact of the two droplets needs to
be represented, as this cannot be adequately depicted by interpolation.

Also for the Droplet data set, we look at the compression results
that can be achieved when specifying limits for the root-mean-square
error (RMSE) that may not be exceeded (Fig. 14). Even for small
RMSE values (i.e., only minor deviations), we already reduce the
number of time steps by a couple of times. Even high compression
rates can be achieved with relatively low RMSE values already, as our
transformations are able to approximate the underlying changes in the
data well for the Droplet data set.



0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040

root-mean-square error (RMSE) as τdist

0

10

20

30

40

50

60

70
da

ta
co

m
pr

es
si

on
ra

tio
|T
|/
|S
|

Fig. 14: Data compression ratio |T |/|S| for the Droplet data set with
varying limits τdistfor the root-mean-square error (RMSE).

6 DISCUSSION OF PROPERTIES AND LIMITATIONS

Next, we briefly summarize the properties of our algorithm, before
discussing its limitations on the basis of fundamental design decisions
and the evaluation results from Sec. 5.

Properties. In this paper, we discussed and demonstrated that our
approach exhibits the following properties:
Transportation-based Distances and Interpolation. Meaningful

distances and smooth intermediates are achieved via assignment-
based distances and paths.

Direct. Our approach works directly on the representation of the data,
and does not require intermediates like features, shapes, or skeletons.

Automatic. We do not require any parameters, selections, or other
kinds of specifications provided by the user.

Generic. No domain knowledge is required.
Progressive. Our iterative approach continuously refines F and can be

interrupted at any time.
Distance Upper Bound. Our approach provides iteratively lowered

upper bounds for the distance between two data sets.
Convergence to Optimum. We will eventually reach the optimal so-

lution with the minimal associated distance.
Parallel. Our approach was designed for efficient parallel execution.

Applicability and Limitations. While we are not aware of cases
in which our approach breaks or fails completely, there are different
application scenarios for which it inherently exhibits certain shortcom-
ings (at least in its current form without respective extensions). In the
following, we categorize these cases in the form of two (successive)
questions: (a) does the Wasserstein metric, and (b) does our respective
progressive computation fit the application purpose?

(a) While we consider generality and automaticity as strong features
of our approach as they enable wide and convenient applicability, some
application scenarios need to incorporate domain-specific knowledge
to yield certain properties, and therefore have to incorporate certain
constraints and/or user input (cf. Sec. 2). For instance, this applies
to (medical) data classified via segmentation (e.g. [35]), or charac-
teristic points with a pre-defined matching (as discussed earlier for
Chameleon→Mouse in Sec. 5.1, and the Flower ensemble in Sec. 5.5).
Another example are physically-based transformations (e.g. [11]). In
contrast, the basic Wasserstein metric (and our γ(·) accordingly) only
considers Euclidean distance without further influence factors (dis-
cussed at the example of morphing with an arbitrary function G in
Sec. 5.4). However, our approach could easily be extended by restrict-
ing the exchanges allowed (e.g., source elements α belonging to a
certain region of a skull may only be assigned to target elements ω be-
longing to the respective region), or by modifying γ(·) (e.g., to consider
physical forces). Another potential issue concerns the reconstruction
of intermediate volumes. Here, the local density (per cell) may exceed
certain limits (e.g., the maximum value), leading to clamping, while
neighboring cells may end up with a significantly lower mass (in the
worst case, this can locally lead to a checkerboard-type look). This
could be overcome by a more advanced reconstruction scheme.

(b) Our approach typically produces “blurry” intermediate results
in early stages of refinement (cf. Sec. 5.1, Fig. 5), but also unpleasant
effects may appear due to respective reconstruction issues. As already
discussed similarly in (a), this could be mitigated by more advanced

reconstruction schemes that explicitly take this into account. Likewise,
we limit ourselves to the (reconstruction of) regular grids in this paper,
but arbitrary data could be used via resampling (either regularly, or with
a combination of inverse transform sampling and density estimation,
cf. Sec. 3). Furthermore, our approach was designed with the goal to
achieve close-to-optimal results as quickly as possible. It will eventually
reach the optimum, but it might take a long time until it gets there
(cf. Sec. 5.1, Fig. 9a). Accordingly, traditional approaches to solve the
transportation problem are better suited for very small problem sizes
(orders of magnitude below typical volume resolutions), in particular
if cost-optimal solutions are strictly required. Furthermore, we use a
two-phase approach for parallelization to avoid explicit synchronization
(e.g., via mutexes). First, each thread individually generates a full plan,
and second, each plan is carried in parallel by all threads. While this
works well for our multi-core implementation and yields close-to-linear
scaling in the long run, we also discussed that the “efficiency” of plans
is comparably low in early stages of refinement when other plans that
were generated in parallel were executed previously (cf. Sec. 5.1, Fig. 6).
Potentially, this could lead to issues when directly porting the approach
to many-core architectures with hundreds of cores like a GPU. This
could be overcome by a hybrid parallelization approach that exploits
the implicit (lockstep) synchronization of threads running on the same
multiprocessor of a GPU (e.g., similar to [17]).

7 CONCLUSION

We presented a technique to directly and automatically transform be-
tween different volumes, and demonstrated its application and utility for
the (visual) analysis of various volume data sets. In contrast to conven-
tional morphing techniques, it requires no parameters, user guidance,
intermediate representations (like extracted features), or a combina-
tion of techniques (e.g., with blending), and imposes no restrictions
regarding shape or structure. Volumes are handled as generic density
distributions, and while linear programming approaches exist to solve
the involved transformation, their complexity makes them infeasible
for high-resolution data sets. Our technique is designed for efficient
parallel and progressive execution that iteratively improves, can be
interrupted anytime, and quickly achieves close-to-optimal solutions.
Most importantly, our approach both generates smooth interpolates
between two arbitrary data sets as well as meaningful distances (along
with an upper bound for the optimal solution). We demonstrated that
this enables a variety of different techniques beyond the analysis of
just a pair of volumes. In particular, we presented a technique for
selecting time steps in a temporal data set that allows to reconstruct
the full sequence, while not exceeding a pre-defined distance between
reconstructed and original volume. We evaluated the characteristics
and utility of our transformation approach in the context of different
use cases and data sets, and compared it against alternative approaches.

For future work, we plan to create a GPU implementation of our
approach. We believe that its overall structure is well-suited not only
for multi-core but also for many-core architectures, and we aim to study
and evaluate this in detail (cf. Sec. 6). While we already presented
various applications in this paper, we further aim to evaluate the utility
of our approach in more breadth and depth by considering additional
scenarios. Among others, we plan to look into employing our approach
for in-situ analysis and reduction in the context of large-scale simula-
tions on supercomputers. We further aim to extend our approach to
additionally consider certain restrictions, incorporating user guidance
and/or domain- or application-specific knowledge (e.g., anatomy in the
field of biology), and then evaluate against previous approaches in the
field. Finally, we plan to examine intermediate volume reconstruction
for arbitrary volume representations, particularly considering the two
options of (1) regular resampling and (2) a combination of inverse
transform sampling and density estimation (cf. Sec. 3).

ACKNOWLEDGMENTS

The authors would like to thank the German Research Foundation
(DFG) for supporting the project within project A02 of SFB/Transregio
161 and the Cluster of Excellence in Simulation Technology (EXC
310/1) at the University of Stuttgart.



REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1993.

[2] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale.
A Review of Temporal Data Visualizations Based on Space-Time Cube
Operations. In R. Borgo, R. Maciejewski, and I. Viola, editors, EuroVis -
STARs. The Eurographics Association, 2014.

[3] B. Bai, A. Joshi, S. Brandhorst, V. D. Longo, P. S. Conti, and R. M. Leahy.
A registration-based segmentation method with application to adiposity
analysis of mice microct images, 2014.

[4] J.-P. Balabanian, I. Viola, T. Möller, and M. E. Gröller. Temporal styles
for time-varying volume data, 2008. POSTER PRESENTATION.

[5] L. Balmelli, C. J. Morris, G. Taubin, and F. Bernardini. Volume warping
for adaptive isosurface extraction. In Proceedings of the Conference on
Visualization ’02, VIS ’02, pages 467–474, Washington, DC, USA, 2002.
IEEE Computer Society.

[6] T. Beier and S. Neely. Feature-based image metamorphosis. SIGGRAPH
Comput. Graph., 26(2):35–42, 1992.

[7] N. Bonneel, M. van de Panne, S. Paris, and W. Heidrich. Displace-
ment interpolation using lagrangian mass transport. ACM Trans. Graph.,
30(6):158:1–158:12, 2011.

[8] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

[9] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and
H. T. Vo. Vistrails: Visualization meets data management. In Proceedings
of the 2006 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’06, pages 745–747, New York, NY, USA, 2006. ACM.

[10] M. Chen, M. W. Jones, and P. Townsend. Image Processing for Broad-
cast and Video Production: Proceedings of the European Workshop on
Combined Real and Synthetic Image Processing for Broadcast and Video
Production, Hamburg, 23–24 November 1994, chapter Methods for Vol-
ume Metamorphosis, pages 280–292. Springer London, London, 1995.

[11] C. D. Correa, D. Silver, and M. Chen. Constrained illustrative volume
deformation. Comput. Graph., 34(4):370–377, 2010.

[12] K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-Roth, C. Meister,
P. Rauschenberger, M. Reitzle, K. Schlottke, and B. Weigand. Direct
numerical simulations for multiphase flows: An overview of the multi-
phase code FS3D. Applied Mathematics and Computation, 272, Part 2:508
– 517, 2016.

[13] S. Fang, R. Srinivasan, R. Raghavan, and J. T. Richtsmeier. Volume
morphing and rendering - an integrated approach. Comput. Aided Geom.
Des., 17(1):59–81, 2000.

[14] Z. Fang, T. Möller, G. Hamarneh, and A. Celler. Visualization and ex-
ploration of time-varying medical image data sets. In Proceedings of
Graphics Interface 2007, GI ’07, pages 281–288, 2007.

[15] O. Fernandes, S. Frey, F. Sadlo, and T. Ertl. Space-time volumetric depth
images for in-situ visualization. In IEEE Large Data and Visualization
2014 (LDAV14), 2014.

[16] S. Frey, F. Sadlo, and T. Ertl. Visualization of temporal similarity in
field data. IEEE Transactions on Visualization and Computer Graphics,
18:2023–2032, 2012.

[17] S. Frey, T. Schlömer, S. Grottel, C. Dachsbacher, O. Deussen, and T. Ertl.
Loose capacity-constrained representatives for the qualitative visual analy-
sis in molecular dynamics. In Visualization Symposium (PacificVis), 2011
IEEE Pacific, pages 51–58, 2011.

[18] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow
problem. In Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, pages 136–146, 1986.

[19] J. Gomes, L. Darsa, B. Costa, and L. Velho. Warping and Morphing of
Graphical Objects. Morgan Kaufmann Publishers Inc., 1998.

[20] Google. Google Optimization Tools, 2015.
[21] T. He, S. Wang, and A. Kaufman. Wavelet-based volume morphing. In

Visualization, 1994., Visualization ’94, Proceedings., IEEE Conference on,
pages 85–92, CP8, 1994.

[22] T. Ijiri, S. Yoshizawa, H. Yokota, and T. Igarashi. Flower modeling via
x-ray computed tomography. ACM Trans. Graph., 33(4):48:1–48:10, 2014.

[23] P. Iyer. Operations research. Tata McGraw-Hill, New Delhi, 2008.
[24] Y. Jang, D. Ebert, and K. Gaither. Time-varying data visualization using

functional representations. Visualization and Computer Graphics, IEEE
Transactions on, 18(3):421–433, 2012.

[25] G. K. Karch, F. Sadlo, C. Meister, P. Rauschenberger, K. Eisenschmidt,

B. Weigand, and T. Ertl. Visualization of piecewise linear interface calcu-
lation. In IEEE Pacific Visualization Symposium, pages 121–128, 2013.

[26] J. R. Kent, W. E. Carlson, and R. E. Parent. Shape transformation for
polyhedral objects. In Proceedings of the 19th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’92, pages
47–54, New York, NY, USA, 1992. ACM.

[27] T.-Y. Lee and H.-W. Shen. Visualization and exploration of temporal
trend relationships in multivariate time-varying data. Visualization and
Computer Graphics, IEEE Transactions on, 15(6):1359–1366, 2009.

[28] T.-Y. Lee and H.-W. Shen. Visualizing time-varying features with tac-
based distance fields. In Visualization Symposium, 2009. PacificVis ’09.
IEEE Pacific, pages 1–8, 2009.

[29] A. Lerios, C. D. Garfinkle, and M. Levoy. Feature-based volume meta-
morphosis. In Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’95, pages 449–456,
New York, NY, USA, 1995. ACM.

[30] L. Lin, C. Lee, and T.-Y. Lee. Distributed volume morphing. Cluster
Computing, 2(3):219–227, 1999.

[31] Y.-S. Liu, H.-B. Yan, and R. R. Martin. As-rigid-as-possible surface
morphing. Journal of Computer Science and Technology, 26(3):548–557,
2011.

[32] A. Lu and H.-W. Shen. Interactive storyboard for overall time-varying data
visualization. In Visualization Symposium, 2008. PacificVIS ’08. IEEE
Pacific, pages 143–150, 2008.

[33] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt,
E. C. Meng, and T. E. Ferrin. UCSF ChimeraA visualization system for
exploratory research and analysis. Journal of Computational Chemistry,
25(13):1605–1612, 2004.

[34] N. Reinfeld and W. Vogel. Mathematical programming. Prentice-Hall,
1958.

[35] T. Rhee, J. P. Lewis, U. Neumann, and K. Nayak. Scan-based volume
animation driven by locally adaptive articulated registrations. IEEE Trans-
actions on Visualization and Computer Graphics, 17(3):368–379, 2011.

[36] Y. Rubner, C. Tomasi, and L. Guibas. The earth mover’s distance as a
metric for image retrieval. International Journal of Computer Vision,
40(2):99–121, 2000.

[37] M. Sanchez, O. Fryazinov, T. Vilbrandt, and A. Pasko. Morphological
shape generation through user-controlled group metamorphosis. Comput-
ers and Graphics, 37(6):620 – 627, 2013. Shape Modeling International
(SMI) Conference 2013.

[38] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann.
Interactive comparison of scalar fields based on largest contours with
applications to flow visualization. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1475–1482, 2008.

[39] J. Shi and C. Tomasi. Good features to track. In Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer
Society Conference on, pages 593–600, 1994.

[40] D. Sieger, S. Menzel, and M. Botsch. RBF morphing techniques for
simulation-based design optimization. Engineering with Computers,
30(2):161–174, 2013.

[41] D. Silver and X. Wang. Tracking and visualizing turbulent 3d features.
IEEE Transactions on Visualization and Computer Graphics, 3(2):129–
141, 1997.

[42] M. L. Staten, S. J. Owen, S. M. Shontz, A. G. Salinger, and T. S. Coffey.
Proceedings of the 20th International Meshing Roundtable, chapter A
Comparison of Mesh Morphing Methods for 3D Shape Optimization,
pages 293–311. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[43] X. Tong, T.-Y. Lee, and H.-W. Shen. Salient time steps selection from
large scale time-varying data sets with dynamic time warping. In Large
Data Analysis and Visualization (LDAV), 2012 IEEE Symposium on, pages
49–56, 2012.

[44] C. Wang, H. Yu, and K.-L. Ma. Importance-driven time-varying data
visualization. Visualization and Computer Graphics, IEEE Transactions
on, 14(6):1547–1554, 2008.

[45] W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci.
Interactive exploration of large-scale time-varying data using dynamic
tracking graphs. In Large Data Analysis and Visualization (LDAV), 2012
IEEE Symposium on, pages 9–17, 2012.

[46] C. G. Willcocks and F. W. B. Li. Feature-varying skeletonization. The
Visual Computer, 28(6):775–785, 2012.

[47] J. Woodring and H.-W. Shen. Chronovolumes: A direct rendering tech-
nique for visualizing time-varying data. In Eurographics/IEEE TVCG
Workshop on Volume Graphics, pages 27–34, 2003.


	Introduction
	Related Work
	Parallel Volume Transformation
	Initialization
	Exchange Plan
	Assignment Exchange
	Termination Criterion
	Reconstruction of Intermediate Volumes

	Error-bound Time Step Selection
	Results
	Transformation between Data Pairs
	Element-based Distances and Interpolation
	Comparison against Transport-based Alternatives
	Comparison against Feature-based Morphing
	Application Example: Similarity Ordering
	Application: Time Series Reduction

	Discussion of Properties and Limitations
	Conclusion

