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Virtual Ray Tracer
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Figure 1: A screenshot of Virtual Ray Tracer showing a scene with UI elements enabled. The scene contains a virtual camera and screen
with 3×3 pixels, and a reflective sphere and cube. Primary and reflection rays are shown in green, shadow rays in orange.

Abstract
Ray tracing is one of the more complicated techniques commonly taught in (introductory) Computer Graphics courses. Vi-
sualizations can help with understanding complex ray paths and interactions, but currently there are no openly accessible
applications that focus on education. We present Virtual Ray Tracer, an interactive application that allows students/users to
view and explore the ray tracing process in real-time. The application shows a scene containing a camera casting rays which
interact with objects in the scene. Users are able to modify and explore ray properties such as their animation speed, the number
of rays as well as the material properties of the objects in the scene. The goal of the application is to help the users—students
of Computer Graphics and the general public—to better understand the ray tracing process and its characteristics. To invite
users to learn and explore, various explanations and scenes are provided by the application at different levels of complexity.
A user study showed the effectiveness of Virtual Ray Tracer in supporting the understanding and teaching of ray tracing. Our
educational tool is built with the cross-platform engine Unity, and we make it fully available to be extended and/or adjusted to
fit the requirements of courses at other institutions or of educational tutorials.

CCS Concepts
• Social and professional topics → Computer science education; • Computing methodologies → Ray tracing;

1. Introduction

Ray tracing [HAM19,MSW21] is an important rendering technique
in Computer Graphics. It is capable of producing realistic images
and animations, albeit at a high computational cost. In real-time
rendering applications, where performance is vital, ray tracing is

often too slow and other rendering techniques such as rasteriza-
tion [MS21] are used. While these techniques are fast, they often
produce less convincing results. Because of this, ray tracing has
seen much use in offline rendering applications such as animated
films, but recent advances in graphics hardware are also making
ray tracing suitable for real-time rendering applications [DNL∗17].
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Due to its prevalence and importance, ray tracing is widely
taught in Computer Graphics courses. While the core idea of ray
tracing is simple, more advanced ray tracing techniques can be-
come quite complicated. To aid in the understanding of these tech-
niques it is often useful to visualize them. Simple illustrations are
frequently employed†, but they are 2-dimensional and static, which
limits their effectiveness as an educational tool. To address this is-
sue, we have developed Virtual Ray Tracer, an interactive applica-
tion that visualizes the ray tracing process. Our aim was to develop
a suitable 3D way to visualize ray tracing and to evaluate the effect
the application has on the learning process. The application has the
potential to help computer graphics students understand ray tracing
faster and better than they would without interactive visualizations.

The main demographic for the application is the students follow-
ing the Bachelor-level Computer Graphics course at the University
of Groningen. The application will be used in future iterations of
the course to help teach students about ray tracing. Nevertheless,
the application is built to be accessible to as wide an audience as
possible, so anyone interested in ray tracing is enabled to under-
stand and explore its underlying concepts.

We start by reviewing related work (Section 2). In Section 3 we
discuss the general design of the application while Section 4 covers
the implementation details. In Section 5 we evaluate the results of
the user study we conducted. We state our conclusions and discuss
potential future work in Section 6.

2. Related Work

Our application aims to improve the learning process by pro-
viding a visualization of ray tracing techniques. While applica-
tions visualizing certain aspects and metrics of ray tracing ex-
ist [SHP∗19, SAH∗16, SJL15, ZAD15], they are not specifically
aimed at education. The abundance of such applications does sug-
gest that visualization is a useful tool in understanding ray trac-
ing. Conversely, there are many applications aimed at teaching ray
tracing, but they do not directly visualize the ray tracing process
itself [SSM02, VGV∗20].

Nevertheless, the idea for an educational application that visual-
izes ray tracing is not entirely unique. One of the first implemen-
tations comes in the form of a set of Java Applets developed in
1999 [Rus99]. Unsurprisingly, its age means that the application
is rather simple by today’s standards and thus unlikely to be use-
ful for teaching ray tracing today. This is cemented by the fact that
the application seems to be no longer available online. Its age and
unavailability also mean that it is not possible to extend the applica-
tion to meet modern standards of graphical fidelity and interactivity.

A more recent application similar to ours is the Ray Tracing
Visualization Toolkit (rtVTK) [GFE∗12]. As the name suggests,
rtVTK is a toolkit for the visualization of ray tracing. The main
goals of rtVTK are to aid in the development of ray tracing appli-
cations and to help with ray tracing education. However, the au-
thors themselves admit that rtVTK may be too complicated for the

† E.g. the Wikipedia illustration at https://commons.wikimedia.
org/wiki/File:Ray_trace_diagram.svg#file

Figure 2: Several examples of preset and customised scenes in Vir-
tual Ray Tracer. Each scene comes with a virtual customizable
camera and screen. A scene can contain an arbitrary number of
shapes and light sources with adjustable attributes (material/color,
ambient/diffuse/specular coefficients, etc.). The traced rays, color-
coded based on their type (primary, shadow, etc.), are shown as
well.

latter. The main issue is that rtVTK requires users to hook up the
toolkit with their own ray tracing application. While this approach
means the toolkit can be used in nearly any ray tracing application,
it is not exactly trivial. For an educational application meant to be
accessible to as many people as possible this is not ideal.

Consequently, there is room for a dedicated and user friendly
educational application that visualizes the ray tracing process.

3. The Application

The default setup for the application is a scene with some objects,
lights and exactly one camera. Figure 1 shows a simple scene. Rays
slowly shoot from this camera, one ray through each pixel of the
camera’s screen. When a ray intersects an object in the scene, a
shadow, reflection and/or refraction ray may be traced from that
intersection point. Each different type of ray has its own color. For
example, reflection rays are blue while refraction rays are green.
Several example scenes are shown in Figure 2.

The user can interact with the objects, lights and camera in the
scene by clicking on one to select it. This opens a properties panel.
Properties of the selected object changed by the used are immedi-
ately reflected in the scene visuals and the rays being traced. The
results of the visible rays are displayed on the camera’s screen and
in the bottom left preview window. Again, this only shows the re-
sults of the rays being visualized, so it is very low resolution. The
user can press the “Render” button in the general properties panel
to open a high resolution ray traced rendering.
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Ray traced Unity (rasterised)

Figure 3: A comparison of different materials in the Unity scene
and in the ray traced render. Diffuse materials look nearly identical
(top row), but transparent materials are only roughly approximated
in Unity (bottom row).

3.1. Visuals

The core of the application is the visualization of ray tracing. This
comprises the ray-traced scene from the point of view of the virtual
camera (shown within the scene on the camera’s screen and in a
separate widget, see Figure 1), the scene itself from the user’s point
of view (Section 3.1.1), and most importantly the visualization of
the rays traced in the scene (Section 3.1.2).

3.1.1. Scene Visuals

Ideally, the scene visuals should match the final ray traced image
when viewed from the camera’s viewpoint. At the same time, it is
crucial in our context that the application remains responsive at all
times even for high ray counts on current commodity hardware. We
have therefore opted to render the scene visuals via rasterization,
which is computationally much less demanding than current real-
time ray tracing methods [MSW21]. This yields smooth and highly
interactive operation on current commodity hardware—which stu-
dents and the general public can be expected to have—while still
conveying the visual appearance of the result. This intuitively al-
lows users to immediately get an impression of the result of the
setup within the scene without needing to view a separate window.

By employing a custom shader based on the same Phong illumi-
nation model [Pho75] used by the ray tracer, we can make diffuse
reflections and specular highlights look nearly identical. The visu-
als based on tracing recursive rays such as reflections and refrac-
tions can generally not be replicated as easily; see Figure 3. The
only exception is shadows, since Unity provides built in support
for them.

An alternative would be not to try to match the ray tracer visuals,
e.g. by rendering each object with the same uniform color, regard-
less of the material settings provided to the ray tracer. Then there
would be no confusion about some materials not lining up with the
ray traced image. However, this would make editing object materi-
als much worse, because none of the changes would be reflected in
the scene visuals. This is arguably more confusing than the slight
differences between the rasterized and ray traced visuals.

3.1.2. Ray Visuals

In order to visualize ray tracing in an intuitive and appealing way,
we need to carefully consider how we draw the rays. It needs to

Figure 4: A comparison of lit and unlit ray materials. Left: Rays
affected by scene lights (our default). The rays look 3D and their
positions are easily determined. Right: Rays unaffected by lights.
The rays look 2D and their positions are difficult to determine.

be clear where a ray is coming from, where it is going, and what
kind of ray it is. All this combined with the fact that it should be
possible to draw many rays at once makes for an interesting design
and engineering challenge.

The core idea behind the ray design is simplicity. We want the
user to be able to clearly see the rays, but we do not want to make
the rest of the scene difficult to see. This becomes especially true
when the number of visualized rays is large. Therefore, the rays
should have a simple shape and material.

The simplest shape for a ray is a cylinder. We could
argue that a cylindrical arrow (see the inset) is a bet-
ter option because, while more complex, it also in-
dicates the direction of the ray.

However, we believe that animating the rays is a more natural
way of showing the direction of a ray, while keeping the actual
ray object simple. What we mean by animation is that we gradually
extend rays from their origin towards their end point. Once a ray has
reached its full length, its child rays (such as reflection rays) start
their animation. We do things this way as it clearly demonstrates
the recursive nature of ray tracing (see the accompanying video).

We decided to shade the rays based on the scene’s lighting con-
ditions combined with an ambient color. This provides a better un-
derstanding of their position and orientation in the 3D scene. The
ambient color was added to make the rays easily visible even when
there is no lighting in the scene. To better distinguish between dif-
ferent kinds of rays, we color rays based on their type.

The difference between the two approaches is shown in Figure 4.

3.2. Settings and Controls

One of the most important features of the application is its inter-
activity. We want the user to be able to experiment with different
settings and to learn ray tracing and its components that way. To
this end, we allow users to change a wide variety of settings re-
garding the ray visualization and properties of objects in the scene,
and to add or remove a predefined set of objects to/from the scene
(see the accompanying video).

We aim to make our application as accessible and intuitive as
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Figure 5: Transformation gizmos. From left to right: Translation
gizmo, rotation gizmo, and scale gizmo.

possible with our user interface (UI) design. Most of our UI com-
ponents are on the right side of the screen. This means that the
scene is always visible so that any changes made in the proper-
ties panel have an immediate and obvious effect. Another impor-
tant concept is documentation. All elements in the properties panel
have tooltips, and most aspects of the application are explained in
the help panel. It is important that this information is easily acces-
sible, but only visible on demand. Further, the properties panel’s
contents change based on the user’s selection. For example, when
the camera is selected, only its settings are displayed.

Nevertheless, the best UI is, arguably, no UI. If something can
be done intuitively just through keyboard and mouse input, it is
almost always better than designing UI components for it. A good
example of this are camera controls as well as positioning, rotating
and scaling objects in the scene. By placing shapes on a selected
object that can be clicked and dragged, we can translate, rotate and
scale the object in an intuitive way. This technique is commonly
employed in the scene editors of game engines (such as Unity’s
editor). The shapes are often called transformation gizmos. Figure 5
shows what this looks like in our application. Because clicking and
dragging may not always have the desired precision, we still have
position, rotation and scale UI components in the properties panel,
but in most cases the gizmos are a much more direct and intuitive
way to transform an object.

4. Implementation

Our goal of developing an educational ray tracing tool leads to re-
quirements which then inform the design of our implementation.
Our approach needs to run fluently at all times even on older hard-
ware, be available on many platforms, and be easily extensible. It
is further required to handle scenes that are dynamically changing
as a result of user interaction.

4.1. Program Structure

The application is implemented in Unity‡. Unity is a freely avail-
able game engine that can be used for 2D and 3D applications. It is
widely used, well documented, and there are many resources online
that explain and discuss its various components. This means that
our application can be easily extended. Unity also provides build
support for a wide range of platforms, which allows us to make the
application widely available [vWV22].

Conceptually, the application consists of two core components:

‡ https://unity.com/

Ray ManagerRay Tracer

Scene Data

Rays Ray Visuals

Unity Scene

Ray Tracer
Scene Scene Manager

Scene Data Changes

Translated Scene Data User Input

Figure 6: The design for the general structure of the application.

the ray tracer and the 3D Unity application. The ray tracer takes
information about a scene and produces a list of rays traced in that
scene from the camera. The Unity application visualizes the scene
from a different perspective (that of the user in the interactive ap-
plication), crucially also incorporating the rays generated and fol-
lowed by the ray tracer.

In Unity a scene contains all information regarding the current
state of the application, among others including UI elements and
rays. Most of this information is irrelevant to the ray tracer: it only
needs to know about the camera, the objects in the scene, and their
materials. Another relevant point is that, as already mentioned, the
Unity scene will change dynamically based on user input.

Our design to meet these requirements is illustrated in Figure 6.
The Unity application takes input from the user and changes its
internal scene. These changes then need to be sent to the ray tracer
which uses its own, simpler scene representation (Ray Tracer Scene
in Figure 6). For this, we include a translation layer that converts
the Unity scene to the format of the ray tracer, which then outputs a
list of rays for the Unity application to draw (via the Ray Manager).

Our interactivity and performance requirements mean that the
translation from the Unity scene to the ray tracer needs to be fast.
For this, we have implemented the ray tracer using Unity’s built
in ray casting utilities. These utilities work directly with Unity’s
internal scene representation, so the translation layer is comparably
lightweight: it essentially comes down to filtering for the objects
relevant to the ray tracer.

4.2. Scene and Ray Manager

The application is split into the ray tracer and the Unity application,
whereas the Unity application provides the input for the ray tracer
and also handles its output. To better separate these two compo-
nents, we have written the Unity side of our code to contain two
important manager objects: the Scene Manager and the Ray Man-
ager (see Figure 6).

The scene manager handles the input for the ray tracer. This
means that it manages any changes that are made to the scene by
the user and presents that scene data to the ray tracer. As discussed
in Section 4.1, the ray tracer is implemented in Unity and can di-
rectly use Unity scene data, so all the scene manager has to do is to
collect this data into one convenient scene object. This scene object
is simply a list of references to objects in the Unity scene, but with
one important addition: whenever an object property is modified,
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an event gets sent to inform listeners that the scene has changed.
These events allow us to avoid unnecessary calculations when the
scene has not changed.

The ray manager handles the output of the ray tracer. It requests
a list of rays from the ray tracer and is responsible for visualizing
those rays. At the start of the application, the ray manager obtains
a reference to the scene manager and the ray tracer. It subscribes
to the events the scene manager sends out whenever a change is
made to the scene. The ray manager also listens for similar events
sent out by the ray tracer whenever its settings are changed. When
either type of event comes in, the ray manager makes the ray tracer
produce a new set of rays. These new rays are then drawn in the
Unity scene, as described in Section 4.4.

4.3. Ray Tracer

Our ray tracer is based on Whitted’s model [Whi80] with Schlick’s
approximation for refraction [Sch94]. As discussed in Section 4.1,
we make use of built-in Unity functions for casting rays and de-
termining object intersections. More precisely, we employ Unity’s
Physics.Raycast function§. It casts a ray from a given point
and returns information about the first object with a Collider
component it intersects. From this we determine the location of the
intersection, the type of object that was intersected and its material,
and all other information that is needed for ray tracing.

Note that our ray tracer’s main output is a set of rays, not primar-
ily an image. Of course, our ray tracer can still produce an image,
but there is an entire set of functions for generating rays that is
unique to our ray tracer. First of all, the rays themselves are stored
in simple ray objects. These contain the ray’s origin, direction and
length, but also the ray’s type and color. Rays have types for the
purpose of visualization. For example, we want to be able to distin-
guish between a ray produced by a reflection and a ray produced by
a refraction. We can thus color the rays drawn based on their type
to make it clear to the user what each ray does in the scene. In the
code, the color of a ray is the color it contributes to its pixel in the
final image. This way we can create an image from a set of rays.

The ray tracer outputs the rays in a tree structure. Because rays
are traced in a recursive fashion, this tree arises naturally: each re-
cursively called trace function just adds its ray as a child of the ray
of its caller. Each pixel thus corresponds to one tree with the root
ray traced from the camera through the pixel. This means that the
final output of the ray tracer is a list of ray trees (one for each pixel).

4.4. Ray Visualization

As described in Section 3.1.2, we animate the rays by elongating
them in a recursive fashion. One advantage of this approach is its
comparably simple implementation with our organization of rays
in a tree structure (see Section 4.3). For animation, we recursively
traverse this tree until we find a ray that is not fully extended and
increase its length by a small amount. Doing this in each frame until
all rays are at their full length results in the desired animation. It is

§ https://docs.unity3d.com/ScriptReference/
Physics.Raycast.html

possible to reset the animation back to the start by going through
the ray trees and setting each ray’s length to zero. Note that this
simple approach traverses each ray tree every frame, while only
a few, not fully extended rays may be of interest in that frame. If
needed this could be improved by maintaining a list of the currently
active rays, but the induced extra cost is negligible overall.

While often a rather small number of rays is shown for the sake
of visual clarity, there are situations where drawing hundreds—up
to even thousands—of rays is beneficial. Most importantly, it shows
how the rays, as a collective, bounce around in the scene, and it can
allow to identify individual rays with interesting behavior (e.g., a
ray bouncing several times before leaving the scene). It can also
help to convey a better impression of the amount of work involved
in ray tracing a high resolution image.

Drawing a large number of rays does come at a significant com-
putational cost though, so the ray drawing code needs to be well
designed to handle dynamically generated rays. When the rays we
need to draw have changed since the last frame, for example due to
the camera being moved, we cannot simply move the existing ray
objects in the same direction as the camera because the structure of
the ray trees and the number of rays may have changed. Unfortu-
nately, the simplest option to destroy the old ray objects and create
new ones in the right positions is not feasible, as the Unity functions
corresponding to these actions, Destroy¶ and Instantiate∥,
are not fast enough to handle hundreds of rays. This means that we
need to reuse the already existing ray objects in the scene, even if
the structure of the ray trees is different from what it was before.

The solution lies in noticing that there is a difference between
the plain data rays produced by the ray tracer and the Unity scene
ray objects used to visualize that data. We can keep the ray objects
around when the ray trees change, but we need to update their po-
sitions and colors to match the new data, and we may also have to
hide some objects if the total number of rays has decreased. This
can be achieved through the use of a so-called object pool.

An object pool is a design pattern commonly used in Unity ap-
plications when a lot of instances of the same type of object have
to frequently be created and destroyed. It works by keeping a large
number of instances of the object in a "pool". When a new object
needs to be created we instead activate an unused one from the
pool, and when it needs to be destroyed we deactivate it. Because
activating and deactivating an object is much faster than creating or
destroying it, this significantly improves performance.

In our application we store the ray objects in such a pool. When a
new set of rays comes in from the ray tracer, we take one ray object
from the pool for each ray, activate it, and set its position and color
to reflect the ray. If there are ray objects in the pool that are still
active from before but are not being used for the new rays, they are
deactivated. This allows us to update hundreds of rays every frame
while maintaining good frame rates.

¶ https://docs.unity3d.com/ScriptReference/
Object.Destroy.html
∥ https://docs.unity3d.com/ScriptReference/Object.
Instantiate.html
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Figure 7: The scene used to measure the performance of Virtual
Ray Tracer. It contains multiple light sources, a reflective object
and a transparent object.

5. Evaluation

We first evaluate the run-time performance of Virtual Ray Tracer
and then discuss our user study. Table 1 lists the timings of the tool
for the scene shown in Figure 7 and an increasing resolution of
the virtual screen. The data, captured on a laptop running Windows
10 with an Nvidia GTX 1050 GPU and an Intel i7-7700HQ CPU,
shows that the application runs very smoothly up to a virtual screen
size of 16×16 pixels on relatively modest hardware, with 32×32
still achieving interactive frame rates.

We note that the visualization already gets noticeably cluttered
for 82 virtual screen pixels, so for most practical use cases, the
frame times are well within acceptable standards. We measured
the average frame time for a stationary scene and the artificial set-
ting where the virtual camera’s position is updated every frame.
This forces ray paths to be recalculated continuously, simulating
the worst case where the user is constantly updating the scene.

Table 1 shows that there is a modest difference between the two
situations for larger virtual screen sizes. In practice, users do not
tend to make changes to the scene every frame and the average
frame time for the stationary scene is thus more representative.

Second, in order to determine the effectiveness of the application
as an educational tool, and also to evaluate the qualitative aspects of
the application, we set up a user study. We reached out to students
who had previously followed the Computer Graphics course and
also people from outside the Computing Science degree program
at the University of Groningen. The idea behind contacting these
two groups is that the Computer Graphics students should be able
to provide feedback on whether the application would have been
useful to them in the course, while the others can give insight into
the effectiveness of the application as an introduction to ray tracing.

We recruited 17 participants, 8 of which had previously followed
the Computer Graphics course. Of the 9 that had not, 6 were mem-

Table 1: Average frame timings based on internal measurements
based on the Virtual Ray Tracer scene shown in Figure 7.

Virtual screen pixels 22 42 82 162 322

Frame times animated scene (ms) 3.35 3.70 5.17 17.79 44.01
Frame times stationary scene (ms) 3.33 3.44 4.32 12.92 37.78

bers of the general public with no formal education in Computer
Science or a related field. We sent them a demo version of the ap-
plication with a few scenes. The first scene explained the basic con-
trols and layout of the tool. The other scenes each focused on a ray
tracing concept and started with a short written explanation.

The first of these scenes showed a sphere with a diffuse material
and explained diffuse reflections as well as shadows. In the next
scene, specular reflections were added to the sphere. The sphere
was made transparent for the scene after that. This covered all the
ray tracing functionality implemented in the application, so instead
of introducing new concepts, the next few scenes were more com-
plex and focused on combining and experimenting with the con-
cepts shown previously. Along with gradually increasing the com-
plexity of the scenes, we also enabled more features of the appli-
cation with each scene. This way the users were introduced to the
application without being overwhelmed. Once the users finished
the demo we asked them to fill in a short survey. The results of this
survey are discussed in the following in Sections 5.1, 5.2, and 5.3.

5.1. Educational Questions

The first set of questions asked the users about the educational qual-
ities of the application. Below for each question we list the pos-
sible responses and the number of participants that selected each
response. This is followed by a discussion of why we consider the
question to be relevant and what we think the responses say about
the application.

If you followed the course, do you think the application would
be helpful to future students of the course?
1. Yes.

Responses: 8 (100.0%).
2. No.

Responses: 0 (0.0%).

We asked this question because the application may see use in fu-
ture iterations of the Computer Graphics course. As a result, one
of the main goals of the application is to be helpful to students fol-
lowing the course. All 8 participants that had followed the course
previously answered yes to this question. We see this as a strong
indication that we were successful in our goal and that the applica-
tion may be of real benefit to future students.

Did the application help you understand ray tracing better?
1. Yes.

Responses: 10 (58.8%).
2. No, but I already understood ray tracing well beforehand.

Responses: 6 (35.3%).
3. No.

Responses: 1 (5.9%).

This question quite directly asks whether the application succeeded
in its educational goal. We can see that most participants answered
yes, and of those that answered no most already had prior expe-
rience with ray tracing. This tells us that, generally speaking, the
application is helpful as an introduction to ray tracing. The partic-
ipant who answered no did not have a CS background, so perhaps
the application was too technically complex for them. We discuss
this in more detail in Section 5.2.
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Do you think the application can help other people understand
ray tracing better?
1. Yes, I think the application can be very helpful.

Responses: 11 (64.7%).
2. Yes, I think the application can be moderately helpful.

Responses: 6 (35.3%).
3. No, I don’t think the application can be helpful.

Responses: 0 (0.0%).

Since a large part of the participants had taken the Computer
Graphics course, they were already familiar with ray tracing. For
these participants the previous question concerning themselves be-
comes less expressive. This question is supposed to rectify that.
Two thirds of the participants believed that the application can be
very helpful to others, while one third believed it could at least be
moderately helpful. This reinforces our belief that the application
has real educational potential.

Which of the following things do you think were successful in
helping you understand ray tracing?
1. The informative text at the start of scenes.

Responses: 8 (47.1%).
2. The visualization of ray tracing in the scenes.

Responses: 15 (88.2%).
3. The ability to experiment with various settings in the scenes.

Responses: 11 (64.7%).

This final educational question attempts to pin down which parts
of the application contribute the most to its educational value. We
can see that almost every participant thought the visualization was
helpful. We can also see that experimenting with settings is quite
helpful. The informative text was the least popular option. Espe-
cially the participants who had followed the Computer Graphics
course were unlikely to mark it as one of their choices, with some
mentioning the lack of depth and mathematical detail in the infor-
mative text. This is an area that can be improved upon in future
versions of the tool. However, adding detail to the informative text
might have a negative impact on accessibility for the general public.

5.2. Technical Questions

The second set of questions asked the users about technical quali-
ties of the application, including aspects of the application such as
the visuals, the user interface, the controls and general ease of use.
Again, we list below each question the possible responses and the
number of participants that selected each response. This is followed
by a discussion of the purpose of the question and what we think
the responses say about the application.

Did you find the application easy to use?
1. Yes, the application was very easy to use and intuitive.

Responses: 7 (43.8%)
2. Yes, but some things were confusing or difficult.

Responses: 8 (50.0%)
3. No, but it was not very confusing or difficult either.

Responses: 1 (6.3%)
4. No, the application was very confusing and/or difficult to use.

Responses: 0 (0.0%)

Given its educational purpose and our aim to reach as wide an audi-
ence as possible with the application, ease of use is of high impor-
tance. From the feedback, it seems that we have largely succeeded
in this with almost all participants answering yes. However, a small
minority found at least some aspects of the application confusing
or difficult.

What do you think of these aspects of the application?
1. The visuals.

Very bad: 0. Bad: 0. Neutral: 3. Good: 7. Very good: 7.
2. The user interface.

Very bad: 0. Bad: 0. Neutral: 7. Good: 9. Very good: 1.
3. The controls.

Very bad: 0. Bad: 1. Neutral: 3. Good: 10. Very good: 3.
4. The scenes and explanations of ray tracing concepts.

Very bad: 0. Bad: 0. Neutral: 3. Good: 11. Very good: 3.

The previous question told us that some aspects of the application
could do with improvement. This question should point out which
aspects those are, but it hopefully also tells us what was already
good. We see that the controls and user interface are rated the low-
est, but on average most users still thought they were acceptable.
While the other aspects are important as well, note that the visuals
were our main focus in this first iteration of our tool.

What do you think of the complexity of the application?
1. The application is too simple. More settings and controls would

be an improvement.
Responses: 0 (0.0%)

2. The complexity of the application is good.
Responses: 16 (94.1%)

3. The application is too complex. There are too many unnecessary
settings and controls.
Responses: 1 (5.9%)

We discussed in Section 3.2 how we tried to give the user as much
control as possible without making the application too complex.
This question should determine whether we were successful. We
see that almost all users thought the complexity of the application
was good. Interestingly, the one person who disagreed answered in
a previous question that they found the application very easy to use.
Below, we discuss some more detailed responses we gathered.

5.3. Additional Comments

Finally, we asked our participants to state their thoughts on both the
educational and technical aspects of the application. From this we
can determine the general sentiment of the participants.

The educational aspects of the application were very well re-
ceived. There were numerous positive comments about the scenes
and the visualization. For example, one participant commented: “I
really liked how you could see the rays being traced, how they
bounced off of different objects, and how they refracted. It was a
great visual showcase of how ray-tracing works, and I think stu-
dents should be able to better learn the concepts using it.”

Some of the participants who had followed the Computer Graph-
ics course commented on a lack of more detailed, mathematical ex-
planations of the ray tracing concepts covered by the application.
One such participant said: “In context of the CG course I think this
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would be nice to see as an introduction to the corresponding topics
(shadows, reflections etc) however it does lack a bit in the mathe-
matics part of ray-tracing.”

The technical aspects, however, elicited some negative com-
ments. Most of these pointed out parts of the UI or controls that
were perceived complicated or confusing. From the responses to
the multiple choice questions (Section 5.2) we can gather that the
general opinion of the technical aspects of the application is posi-
tive. However, the comments pointed out small aspects of the ap-
plication that can be improved upon in future versions.

6. Conclusion

We have developed Virtual Ray Tracer, an interactive application
that visualizes ray tracing. It was designed to help with teaching
ray tracing and to be used in the Computer Graphics course taught
at the University of Groningen. We have evaluated the application
through a user study. Regarding the educational potential of the
application, the results are positive. It is clear that visualizing ray
tracing can be of great help in understanding it better. It is also
useful to be able to change ray tracer settings and the properties of
objects in a scene with the visualization updating based on every
change made. This interactivity allows users to experiment and see
how various settings affect the rays being traced.

Some aspects of the application were less well received, how-
ever. Mainly the user interface and controls were deemed partly
confusing. Especially users without a CS background had some
difficulty with the application. This can partially be remedied by
more carefully designing these aspects of the application, but at
some point the only reasonable way to reduce complexity is to start
cutting features. Doing this would give users less room to experi-
ment and play with the application, reducing its educational effec-
tiveness. Depending on the target demographic, this may or may
not be a worthwhile trade-off. In conclusion, we are pleased with
the application in its current state and the largely positive feedback
we received from users. We are looking forward to using it in the
next edition of our Computer Graphics course.

We see several directions for future work. The responses to the
survey, especially the comments discussed in Section 5.3, clearly
indicate there is potential for improving user-friendliness. Beyond
UI improvements, we plan to add a tutorial to make the application
more accessible. Another option would be customize the applica-
tion to different target groups, e.g., to CS students, school children,
or the audience of an exposition. For students of the Computer
Graphics course, it could be useful to extend the application in a
way that allows them to adjust the ray tracing process itself. We
also aim to conduct an extended study with a larger group of par-
ticipants and evaluate various learning goals.

The capabilities of our Virtual Ray Tracer could be extended by
acceleration structures (such as bounding volume hierarchies) as
well as more advanced ray tracing approaches (distribution-based
and stochastic methods). Additionally, we plan to incorporate ray
tracing also for rendering the scene visuals. The challenge here is to
maintain high responsiveness of our tool on commodity hardware.

In our implementation, we generally chose simplicity over com-
plexity, but modifications could be able to improve performance

further, and will be considered in future work. For instance, by im-
plementing the ray tracer using Unity functions in C# we were able
to use the same copy of the scene representation for different pur-
poses, but were unable to multithread the code. Unity also supports
C/C++ libraries in the form of native plug-ins∗∗, which could be
used to further improve the performance of our application.

Virtual Ray Tracer is fully available on GitHub [vWV22], which
is also where all related material and future updates can be found.
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