Computers & Graphics 111 (2023) 89-102

Contents lists available at ScienceDirect

Computers
&Graphics

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on EG2022 Edu Best Papers
Virtual Ray Tracer 2.0 )

Check for
updates

Chris S. van Wezel, Willard A. Verschoore de la Houssaije, Steffen Frey, Jifi Kosinka *

Bernoulli Institute, University of Groningen, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 11 November 2022

Received in revised form 15 December 2022
Accepted 12 January 2023

Available online 18 January 2023

Building on our original Virtual Ray Tracer tool, we present Virtual Ray Tracer 2.0, an interactive and
gamified application that allows students/users to view and explore the ray tracing process in real-
time. The application shows a scene containing a camera casting rays which interact with objects in
the scene. Users are able to modify and explore ray properties such as their animation speed, the
number of rays and their visual style, as well as the material properties of the objects in the scene.
The goal of the application is to help the users - students of Computer Graphics and the general
public - to better understand the ray tracing process and its characteristics. This includes not only
the basics of ray tracing, but also more advanced concepts such as soft shadows. To invite users to
learn and explore, various explanations and scenes are provided by the application at different levels
of complexity, each with a step-by-step tutorial. Several user studies showed the effectiveness of the
tool in supporting the understanding and teaching of ray tracing. The educational tool is built with the
cross-platform engine Unity, and we make it fully available to be extended and/or adjusted to fit the
requirements of courses at other institutions, educational tutorials, or of enthusiasts from the general

Keywords:

Ray tracing

Computer graphics education
Visualization

public.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the area of Computer Graphics, ray tracing [1,2] is an im-
portant rendering technique. It is capable of producing realistic
images and animations, albeit at a high computational cost. In
real-time rendering applications, where performance is vital, ray
tracing is often too slow and other rendering techniques such
as rasterization [3] are used. While these techniques are fast,
they often produce less convincing results. Because of this, ray
tracing has seen much use in offline rendering applications such
as animated films, but recent advances in graphics hardware are
also making ray tracing suitable for real-time rendering applica-
tions [4], although often in combination with trained networks
for real-time image denoising.

Ray tracing is, due to its prevalence and importance, widely
taught in Computer Graphics courses. While the core idea of ray
tracing is simple, more advanced ray tracing techniques, such as
area lights and soft shadows, can become quite complicated. The
understanding of these techniques can greatly be supported via
visualization. Simple illustrations are frequently employed,! but
they are 2-dimensional and static, which limits their effectiveness
as an educational tool.

* Corresponding author.
E-mail address: j.kosinka@rug.nl (J. Kosinka).

1 E.g. the Wikipedia illustration at https://commons.wikimedia.org/wiki/File:
Ray_trace_diagram.svg#file.

https://doi.org/10.1016/j.cag.2023.01.005

To address this issue, we developed Virtual Ray Tracer
(VRT) [5], an interactive application that visualizes the ray tracing
process. In this extended and adapted version of our original con-
ference paper [5], we present Virtual Ray Tracer 2.0, an improved
and extended version of the original VRT. Our novel contributions
include:

e Area lights and soft shadows (via super/area sampling);

e Novel ray visualization styles (such as according to impor-
tance and/or color contribution);

e Bounding volumes for acceleration (dynamic axis-aligned
bounding boxes and octrees);

e Gamification (with tailored tutorials per level/scene, reward
badges, and more);

e A mobile and web version of the tool.

Our aim was to develop an improved 3D way to visualize
ray tracing, make it widely accessible, and to evaluate the effect
the application has on the learning process. The application has
the potential to help computer graphics students understand ray
tracing faster and better than they would without interactive
visualizations or guided tutorials.

The main demographic for the application is the students
following the Bachelor-level Computer Graphics course at the
University of Groningen. The application will be used in future
iterations of the course to help teach students about ray tracing.
Nevertheless, the application is built to be accessible to as wide

0097-8493/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.cag.2023.01.005
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2023.01.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:j.kosinka@rug.nl
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg#file
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg#file
https://doi.org/10.1016/j.cag.2023.01.005
http://creativecommons.org/licenses/by/4.0/

CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Fig. 1. A screenshot of Virtual Ray Tracer 2.0 showing a scene with Ul elements
enabled. The scene contains a virtual camera (with the translation gizmo
enabled), a screen with 3 x 3 pixels, and several objects. Primary, reflection, and
shadow rays are visualized (and animated) to explain the ray tracing process.

an audience as possible, so anyone interested in ray tracing is
enabled to understand and explore its underlying concepts.

We start by reviewing related work (Section 2) and providing
relevant background information regarding VRT extensions (Sec-
tion 3). In Section 4 we discuss the general design of the applica-
tion while Section 5 introduces the gamification concepts that we
adopted for our tool. Section 6 briefly outlines the structure of our
implementation in VRT 2.0; please refer to the Appendix for an
in-depth description and a detailed discussion of the changes in
VRT 2.0 over the original VRT. In Section 7 we evaluate the results
of the user studies we conducted. We state our conclusions and
discuss potential future work in Section 8.

2. Related work

Our original VRT application [5] was designed to improve the
learning process by providing a visualization of ray tracing tech-
niques. While other applications visualizing certain aspects and
metrics of ray tracing exist [6-9], these are not specifically aimed
at education. The abundance of such applications does suggest
that visualization is a useful tool in understanding ray tracing.
Conversely, there are many applications aimed at teaching ray
tracing, but they do not directly visualize the ray tracing process
itself [10,11].

Nevertheless, the idea for an educational application that vi-
sualizes ray tracing is not entirely unique. One of the first imple-
mentations comes in the form of a set of Java Applets developed
in 1999 [12]. Unsurprisingly, its age means that the application is
rather simple by today’s standards and thus unlikely to be useful
for teaching ray tracing today. This is cemented by the fact that
the application seems to be no longer available online. Its age
and unavailability also mean that it is not possible to extend the
application to meet modern standards of graphical fidelity and
interactivity.

A more recent application similar to ours is the Ray Tracing
Visualization Toolkit (rtVTK) [13]. As the name suggests, rtVTK is
a toolkit for the visualization of ray tracing. The main goals of
rtVTK are to aid in the development of ray tracing applications
and to help with ray tracing education. However, the authors
themselves admit that rtVTK may be too complicated for the
latter. The main issue is that rtVTK requires users to hook up
the toolkit with their own ray tracing application. While this
approach means the toolkit can be used in nearly any ray tracing
application, it is not exactly trivial. For an educational application
meant to be accessible to as many people as possible this is not
ideal.

Our VRT [5] filled this gap by providing a dedicated and user
friendly educational application that visualizes the ray tracing

90

Computers & Graphics 111 (2023) 89-102

(b) 2 x 2 super-sampling

(a) No super-sampling

Fig. 2. (a) Rendering with no super-sampling. Left is the scene with a screen
overlay where each pixel has one ray in the middle of the pixel, right is the
rendered image. (b) Rendering with super-sampling using 4 samples per pixel.
Left is the scene with a screen overlay where each pixel has 4 rays distributed
over the pixel, right is the rendered image.

process. The present VRT 2.0 builds on this by adding several
features and extensions to VRT, including aspects of distributed
ray tracing [14,15] to provide but also visualize the processes
behind area lights and soft shadows, acceleration spatial data
structures [1,2,16], and concepts of gamification [17,18] to make
the tool fun to use and engaging, among other improvements, as
discussed in detail below.

3. Background

Here we briefly review relevant background information con-
cerning new concepts that we have integrated into VRT 2.0:
distributed ray tracing (Section 3.1) and bounding volumes for
acceleration (Section 3.2).

3.1. Distributed ray tracing

The term Distributed Ray Tracing was first coined by Cook in
1984 [14]. The concept entails integrating (or distributing) rays
over some domain to create certain effects that are typically not
available with standard ray tracing. For example, soft shadows
can be created by distributing rays over the area of an area light
source (as opposed to hard shadows created by point lights).
In theory, to render an image with distributed ray tracing, an
equation which includes integrals must be solved, such as those
involving the rays distributed over a certain range. In practice,
these integrals are often approximated using the Monte Carlo
method [15]. By taking appropriately distributed and weighted
samples (rays) from the given range, the exact value of the
integral at hand is approximated. For soft shadows, this entails
shooting rays to different points on an area light source and
averaging the result. The downside is that many samples are
needed for an accurate approximation, but the upsides are that
the method itself is quite simple and that its computational cost
can be adjusted depending on the desired quality. In VRT 2.0, we
provide two examples of distributed ray tracing: super-sampling
(Section 3.1.1) and soft shadows (Section 3.1.2), as discussed next.

3.1.1. Super-sampling

Super-sampling can be used to avoid aliasing, the effect when
edges appear jagged due to a low image or screen resolution. It
reduces this type of aliasing with an intuitive approach: shoot
(distribute) more than one ray through each pixel and average
the result. The normal rendering approach in ray tracing is to
determine the pixel color by shooting a ray through the middle
of the pixel. This approach is illustrated in Fig. 2 (a).

With super-sampling, we do not shoot a single ray through the
(middle of the) pixel, but multiple rays distributed over the pixel’s
area. Every ray counts as a sample, and each ray contributes
1/s to the pixel’s final color, where s is the number of samples
per pixel. There are many different algorithms to determine how



CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Fig. 3. Hard shadows produced by point light sources (left) versus soft shadows
arising from area light sources (right).

to distribute the rays over the pixel's area [2]. For education
purposes, we chose to go with uniform sampling with 1, 4, or
9 samples per pixel (set by the user). This means that all samples
are spread out evenly, not only within each pixel but across the
entire image, as can be seen in Fig. 2 (b).

3.1.2. Soft shadows

There are two major types of shadows: hard shadows created
by point light sources, and soft shadows created by area light
sources. Hard shadows have hard edges; a light ray either reaches
a point light (no shadow) or it does not (full shadow). There is
nothing in between. Hard shadows are often seen as unrealistic
because almost all shadows in real life are soft shadows. However,
they are realistic enough in some scenarios, simple to understand,
and more efficient to compute than soft shadows.

Soft shadows arise from a light source that does not illuminate
from a point, but from an area: an area light. An area light source
may be fully visible or not visible at all from a point in the scene.
Or, it can be partially visible, thus giving rise to a soft shadow.
This concept is visualized in Fig. 3.

To compute soft shadows, we need to determine how much
of the light’s area is visible from a particular point. To get the
exact answer, one needs to compute an integral over the light
source’s area. As mentioned above, this is difficult. Instead, we
resort to distributed ray tracing again and approximate the result
by taking s uniformly spread samples over the area light(s) in the
scene with s € {22, 32, ..., 10%). s can be set individually for each
area light by the user.

3.2. Bounding volumes for acceleration

A myriad of bounding volumes and their hierarchies exists to
accelerate ray tracing [19]. The overarching principle is simple:
given a complex object composed of many triangles, a standard
ray-object intersection routine needs to check each triangle in-
dividually for ray intersections. In case a bounding volume of
the object is known, it is sufficient to test only the bounding
volume for ray intersection to register a miss. We bring two such
volumes to VRT 2.0: axis aligned bounding boxes (Section 3.2.1)
and octrees (Section 3.2.2).

3.2.1. Axis aligned bounding boxes

The axis-aligned bounding box (AABB) of a 3D object with
(x,y, z) positions has two of its diagonally opposite corners at
(Xmin» Ymin, Zmin) and (Xmax, Ymax, Zmax). AABBs spatially encapsu-
late the object within them. Computing whether a ray intersects
a bounding box or not before checking for intersections with

91

Computers & Graphics 111 (2023) 89-102

S

Fig. 4. A 2D illustration of the axis-aligned bounding box and octree concepts.
The given shape (in gray) is to be intersected with several rays originating at the
eye/camera (magenta). The blue ray misses the bounding box (solid rectangle),
and thus the shape. The green ray hits the bounding box. When using an octree
(here with levels 0 (solid), 1 (dashed) and 2 (dotted)) within the bounding box,
the green ray is deemed to miss the object at level 1. The red ray intersects a cell
at level 2. The parts of the object (here line segments, in 3D typically triangles)
overlapping with the cell highlighted in pink are tested for intersection with the
(red) ray, leading to the ray-object intersection.

the object is key to accelerating intersection tests between rays
and objects. If the ray does not intersect the AABB, then we can
trivially ignore its intersection calculations for the object within:
a ray that misses a bounding box cannot intersect anything en-
capsulated by that same bounding box (see the 2D illustration in
Fig. 4).

3.2.2. Octrees

An (axis-aligned) octree is a tree data structure for spatial
partitioning of a 3D object. Each node in the tree can have either
8 or no children. At level 0, it is the AABB of the 3D object. Deeper
levels are obtained by recursively splitting a node into 8 children
provided it overlaps with the object. The recursion stops when a
given depth is reached (or when the number of triangles in all
cells is below a given minimum).

This way, just like with AABB acceleration, we check for ray
and octree nodes (boxes) intersections first. The following two
cases can arise: (1) The ray misses the octree (root node) com-
pletely. The ray thus misses the object. (2) The ray hits an octree
node. The ray is checked, recursively, for intersection with the
children of that node. Empty nodes lead to no intersection check-
ing and if only those are encountered, the ray again misses the
object. The parts of the 3D object overlapping with the non-empty
nodes are checked for intersection.

This accelerates the intersection finding process because not
all rays need to be checked for intersection with the (complex)
object.

4. The application

The default setup for the application is a scene with some
objects, lights and exactly one camera from which rays are cast.
Fig. 1 shows one such scene. Rays slowly shoot from this camera,
one ray through each pixel of the camera’s screen. When a ray
intersects an object in the scene, a shadow, reflection and/or
refraction ray may be traced from that intersection point. Each
different type of ray has its own default color. For example,
reflection rays are blue while refraction rays are green. Several
example scenes are shown in Fig. 5.

The user can interact with the objects, lights and camera in the
scene by clicking on one to select it. This opens a properties panel.
Properties of the selected object changed by the user are immedi-
ately reflected in the scene visuals and the rays being traced. The
results of the visible rays are displayed on the camera’s screen
and in a preview window (bottom right in Fig. 1).

Again, this only shows the results of the rays being visualized,
so it is very low resolution. The user can press the Render button
in the general properties panel to open a high resolution ray
traced rendering.



CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Fig. 5. Example scenes in Virtual Ray Tracer 2.0. Each scene comes with a virtual
customizable camera and screen. A scene can contain an arbitrary number of
shapes and (area) light sources with adjustable attributes (material/color, am-
bient/diffuse/specular coefficients, etc.). The traced rays, by default color-coded
based on their type (primary, shadow, etc.), are shown as well.

Ray traced Unity Ray traced Unity

Fig. 6. Different materials in the ray traced renderings and in the rasterized
Unity scene. Diffuse materials look nearly identical (left pair), but transparent
materials are only roughly approximated in Unity (right pair).

4.1. Visuals

The core of the application is the visualization of ray trac-
ing. This comprises the ray-traced scene from the point of view
of the virtual camera (shown within the scene on the cam-
era’s screen and in a separate widget, see Fig. 1), the scene
itself from the user’s point of view (Section 4.1.1), various light
source types (Section 4.1.2), the visualization of the rays traced
in the scene (Section 4.1.3), and the acceleration data structures
(Section 4.1.4).

4.1.1. Scene visuals and rendering

Ideally, the scene visuals should match the final ray traced
image when viewed from the camera’s viewpoint. At the same
time, it is crucial in our context that the application remains
responsive at all times even for high ray counts on current com-
modity hardware. We have therefore opted to render the scene
visuals via rasterization, which is computationally much less de-
manding than current real-time ray tracing methods [2]. This
yields smooth and highly interactive operation on current com-
modity hardware - which students and the general public can be
expected to have - while still conveying the visual appearance
of the result. This intuitively allows users to immediately get an
impression of the result of the setup within the scene without
needing to view a separate window. A secondary advantage of
this is that the application can be used to explain the differences
between rasterization and ray tracing (something very handy in
Computer Graphics courses).

92

Computers & Graphics 111 (2023) 89-102

Fig. 7. A point light source (left) versus a spot lights source with a 90° spot
angle (middle) and a 120° spot angle (right).

By employing a custom shader based on the same Phong
illumination model [20] used by the ray tracer, we can make
diffuse reflections and specular highlights look nearly identical.
The visuals based on tracing recursive rays such as reflections and
refractions can generally not be replicated as easily; see Fig. 6. The
only exception is shadows where we use the built in support in
Unity.

An alternative would be not to try to match the ray tracer
visuals, e.g. by rendering each object with the same uniform color,
regardless of the material settings provided to the ray tracer. Then
there would be no confusion about some materials not lining up
with the ray traced image. However, this would make editing
object materials much worse, because none of the changes would
be reflected in the scene visuals. This is arguably more confusing
than the acceptable differences between the rasterized and ray
traced visuals.

4.1.2. Lights

VRT 2.0 supports a variety of light sources. While the original
VRT offered only point light sources, VRT 2.0 provides also spot
light sources (with angular and distance attenuation) and area
light sources.

Point light sources are the simplest kind of light sources. They
are specified by their position in the scene and their intensity.
They are a close approximation of light sources like our Sun; see
Fig. 7, left.

Spot light sources are also specified by their location and inten-
sity. But on top of this, they are defined by additional properties,
which make them behave like physical flashlights producing a
cone of light. The axis of the cone is defined by their position
as well as direction. This cone can be narrow or wide; this is
controlled by spot angle. An example can be seen in Fig. 7. As the
light source itself is an infinitely small point, just like the point
light, light rays work exactly the same as with point lights, up
to one difference: if a light ray falls outside the cone of the spot
light, the light source is ignored (the origin of the light ray is not
lit).

Area lights have some things in common with spot lights: they
also have a direction and an ‘angle’, but this angle is fixed at 180°.
Unlike the other lights, the area light is no longer an infinitely
small point, but an area. As this is a better approximation of most
real-world lights, it greatly adds to the realism of scenes by giving
rise to soft shadows (Section 3.1.2).

An area light is visualized by a simple rectangle with the front
side colored as the light’s color and the back side colored black.
An example can be seen in Fig. 3, right. As for the rays, we
consider two options. We either show every ray as an individual
ray from the point to the sample location, or one big ‘cone’
from a point to the area light source. The latter approach can
dramatically reduce the number of rays, and thus improve perfor-
mance and avoid visual clutter. In contrast, the former approach
clearly visualizes the sampling process. We chose to go with a
combination of the two. Up to 42 16 samples, all rays are
visualized by individual rays. From 5% = 25 samples upward, if



CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Computers & Graphics 111 (2023) 89-102

Fig. 8. An area light sampled using 16 of fewer samples visualizes every ray
(left) and an area light with 25 or more samples shows only a single area-ray
(right).

Fig. 9. No angle attenuation (left) versus angle attenuation (right).

all rays reach the light or all do not, they are transformed into a
pyramid which we call an area-ray; see Fig. 8. If some rays reach
the area light and some do not, we show the rays individually.

To further increase realism, we add light attenuation in VRT
2.0. Light attenuation means that light intensity gradually de-
creases according to some formula. We use two types of light
attenuation: distance attenuation and angle attenuation.

Distance attenuation is a simple way of attenuating light ac-
cording to the inverse square law. The intensity of the light
decreases proportionally to the square distance from the light
source. This can be seen from the formula of the surface area
4712 of a sphere with radius r. As the light travels farther (radius
increases), the area covered by the exact same number of light
particles (photons) increases quadratically.

Angle attenuation is a type of attenuation that applies only to
light sources with a direction: spot and area lights in our case.
It again models real flashlight behavior, this time by lowering
the spot/area light’s intensity according to the angle between the
light’s direction and the direction to the scene point in question
from the light. This is shown in Fig. 9.

4.1.3. Ray visualization

In order to visualize ray tracing in an intuitive and appealing
way, we need to carefully consider how we draw the rays. It
needs to be clear where a ray is coming from, where it is going,
what kind of ray it is, and potentially also what sort of informa-
tion (color) it contributes. All this combined with the fact that
it should be possible to draw many rays at once makes for an
interesting design and engineering challenge.

The core idea behind the ray design is simplicity. We want the
user to be able to clearly see the rays, but we do not want to make
the rest of the scene difficult to see. This becomes especially true
when the number of visualized rays is large. Therefore, the rays
should have a simple shape and material.

The simplest shape for a ray is a cylinder. We could argue
that a cylindrical arrow is a better option because, while more
comple, it also indicates the direction of the ray. However, we
believe that animating the rays is a more natural way of showing
the direction of a ray, while keeping the actual ray object simple.
What we mean by animation is that we gradually extend rays
from their origin towards their end point. Once a ray has reached

93

Fig. 10. Left: Rays unaffected by lights. The rays look 2D, are too prominent,
and their positions are difficult to determine. Middle: Ray lighting in the original
VRT tool. Most rays look 3D and their positions are easily determined. However,
light rays still look 2D. Right: Ray lighting in VRT 2.0. All rays look 3D due to a
point light source at the user’s eye. This light source influences only the rays.

its full length, its child rays (such as reflection rays) start their
animation. We do things this way as it clearly demonstrates the
recursive nature of ray tracing (see the accompanying video).

We decided to shade the rays based on the scene’s lighting
conditions combined with an ambient color (VRT versions), and
a point light source at the user’s eye (added in VRT 2.0) that
influences only the rays, which are themselves not influenced
by any other (user-specified) lights in the scene. This provides
a better understanding of their position and orientation in the
3D scene. The ambient color was added to make the rays easily
visible even when there is no lighting in the scene, and the
extra illumination from the eye provides a 3D look to light rays,
especially in scenes with only a single point light source. To better
distinguish between different kinds of rays, rays are by default
colored based on their type. The differences among the three
approaches is shown in Fig. 10.

One of the consequences of showing all rays for area lights,
to visualize super-sampling, and screens with lots of pixels is po-
tential visual clutter. To avoid this, VRT 2.0 introduces several ray
visualization styles. The original VRT tool provides only limited
options: rays have a color corresponding to their type; see Fig. 11,
far left. All rays have the same radius, controllable by the user,
and only rays that do not hit anything can be hidden. We have
added several additional options to change the rays’ appearance
to help the user figure out what is happening in the scene, as
follows.

Some rays are really important as they greatly impact their
pixel’s color, and some are negligible, contributing nearly nothing.
Especially with higher levels of recursion, there may be a lot of
these rays that have barely any impact. To declutter the scene,
the user may want to hide these rays. To do this, we have added
the option to hide negligible rays. This hides rays that contribute
less than a set threshold.

By making rays transparent, we can show lots of rays whilst
still being able to see the scene. How transparent a ray should be
is subjective to how visible the user wants the scene to be and
how visible the rays should be. We have added the option ray
transparency and made the level of transparency controllable by
the user.

As already mentioned, some rays are more important than
others. Another option to distinguish among these rays is to
adjust their size, which is in this case their radius, depending on
their contribution. We have added dynamic ray radius as an option
to make the ray’s radius depend on its contribution. This maps
every ray’s contribution to a radius between a certain minimum
and maximum radius set by the user.

Lastly, it is instructive and interesting to the user to be able
to see where the pixel’s color comes from. To this end, we have
added the possibility to change the ray’s color to the color it
contributes to the pixel’s color. This way, the user can visually see
how the pixel gets its color. Several combinations of these ray
visualization options are shown in Fig. 11.



CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Computers & Graphics 111 (2023) 89-102

original

+ hide negligible rays

+ ray transparecy

+ dynamic ray radius + contribution-based color

Fig. 11. Various ray visualization styles. From left to right (each time, an additional option is enabled): All disabled (the only option available in the original VRT
tool), hide negligible rays, ray transparency, dynamic ray radius, contribution-based ray color.

Fig. 12. The axis-aligned bounding box and level 0 octree (left) and level 3
octree (right) of a goat mesh. Note the adaptivity of the octree: empty regions
are not subdivided; cf. Fig. 4.

4.1.4. Acceleration structures

The axis-aligned bounding box and the octree data structure
are represented as wire frames around the object they bound
(see Fig. 12). The acceleration status is reported to the user, as
can be seen in Fig. 13 in the case of an octree built around
a goat mesh. The user is informed not only of the case that
arose in the intersection test (such as a miss), but also of the
number of ray-intersection computations performed and avoided.
For educational purposes and the sake of clarity, the screen is
limited to only one pixel, i.e., only one primary ray is used in the
scene.

4.2. Settings and controls

One of the most important features of the application is its
interactivity. We want the user to be able to experiment with
different settings and to learn ray tracing and its components
that way. To this end, we allow users to change a wide variety
of settings and properties of objects in the scene, and to add or
remove a predefined set of objects to/from the scene (see the
accompanying video).

We aim to make our application as accessible and intuitive
as possible with our user interface (UI) design. Most of our Ul
components are on the right side of the screen. This means that
the scene is always visible so that any changes made in the
properties panel have an immediate and obvious effect. Another
important concept is documentation. All elements in the proper-
ties panel have tooltips, and most aspects of the application are
explained in the help panel. It is important that this information
is easily accessible, but only visible on demand. Further, the
properties panel’s contents change based on the user’s selection.
For example, when the camera is selected, only its settings are
displayed.

Nevertheless, the best Ul is, arguably, no UL If something can
be done intuitively just through keyboard and mouse input, it
is almost always better than designing Ul components for it. A
good example of this are camera controls as well as positioning,
rotating and scaling objects in the scene. By placing shapes on a
selected object that can be clicked and dragged, we can translate,
rotate and scale the object in an intuitive way. This technique is
commonly employed in the scene editors of game engines (such
as Unity’s editor). The shapes are often called transformation

94

N

Fig. 13. The various feedback provided to the user of VRT 2.0 in a scene with
an octree of a goat mesh (with 731 triangles in total) depending on the mutual
position of the single ray in the scene, the octree, and the mesh within it.
In each, the user learns how many ray-triangle intersections tests have been
avoided thanks to the octree.

o

Fig. 14. Transformation gizmos. From left to right: Translation gizmo, rotation
gizmo, and scale gizmo.

gizmos. Fig. 14 shows what this looks like in our application.
Because clicking and dragging may not always have the desired
precision, we still have position, rotation and scale Ul components
in the properties panel, but in most cases the gizmos are a much
more direct and intuitive way to transform an object.

In addition, toggles for each type of light can disable those
types of lights completely. This allows the user to experiment,
for example, with different light types at the same positions. We
also added a button that ‘flies’ the user to the virtual camera that
the ray tracer uses. This allows the user to compare the rasterized
scene with the ray traced scene.

As rendering a scene with an area light and super-sampling
can take longer, we added a progress bar to the render screen
so the user can estimate how long they have to wait before the
render is done.



CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Virtuel R@ lliifalcels

Fig. 16. Gizmos of the Virtual Ray Tracer mobile application; cf. Fig. 14.

4.2.1. Mobile controls

Besides desktop versions for all major operating systems, VRT
2.0 is also available as a web tool [22]. In terms of controls, the
web port did not require any changes. However, the same cannot
be said of our mobile port for Android [21] (note that due to
computational and screen space limitations, this port currently
supports features of the original VRT tool only). We now elaborate
on the needed changes.

The WebGL version of our tool does not work particularly
well (or not at all) on mobile devices [23], and features like
keyboard input are (typically) not available. All Ul components
had to be adapted to make the application readable and usable
for mobile users. The home screen is shown in Fig. 15. In general,
the buttons, menus, bars, and hitboxes have been made bigger
(relative to screen size), and the color picker has been adjusted
for mobile screen use as well. Another modification concerns
the gizmos used to translate, rotate and scale objects within the
scene: they have become larger and are in turn easier to use on
mobile devices; see Fig. 16.

Besides all these Ul changes, input methods [24] had to be
changed, too. The application has three ways to move within a
scene: panning, zooming and orbiting. Panning on the mobile
version of VRT is done using one touch and dragging this touch
across the screen. Zooming within the mobile version of VRT is
done with the use of two touches. Orbiting is accessed by double
tapping the screen and holding the second tap, and then dragging
that touch in the desired direction.

5. Gamification

The main idea behind gamification is for users to engage in
specific actions and behaviors in return for rewards. When our
brain expects these rewards, it will release dopamine, which gives
feelings of pleasure. We have thus decided to gamify VRT to
ensure its users are extrinsically motivated [25] to engage with
the tool in order to receive these rewards, and in turn learn
about ray tracing in the process. Intrinsic motivation is harder
to obtain [26]. In our case, we assume that users are already
intrinsically motivated to learn about ray tracing, in which case
extrinsic-based gamification can be very effective [18].

Following the concept of BLAP (Badges, Levels/Leaderboards,
Achievements, and Points) gamification [18], we have added the

95

Computers & Graphics 111 (2023) 89-102

Introctuction

A AR EIHERESS Previous Level Next Level

1.2 Help Menu

We'll firs
elen

art by going over the c
5. If you get lost somewhere, you can aly
previot or find all the n ary information in the help
menu. Ac 5 this menu any time by clicking the "Help" button in
the top left or by pr g [F1].
181

2/20 |

Fig. 17. Top: The pop-up message in the first level of the original Virtual Ray
Tracer tool. Bottom: The step-by-step tutorial in the new version of Virtual Ray
Tracer, in this case displaying the Help Menu task of the first level. These tasks
appear in the bottom left part of the screen; see Fig. 1.

following features to VRT: a step-by-step tutorial (Section 5.1),
points and unlockable items (Section 5.2), and badges
(Section 5.3).

5.1. Step-by-step tutorial

The original VRT tool includes a pop-up message with expla-
nations about the application itself or ray tracing before the start
of each level. Fig. 17, top, shows one of these pop-up messages.

These messages might be skipped because of their length,
causing users to miss important concepts. Others might read
them but still miss important information because they failed to
remember (some of) it. Replacing these pop-up messages with
a step-by-step tutorial addresses these problems and provides
additional benefits. The lengthy text is split into small, individual
steps, which makes the users feel like they never have to read
large amounts of text. Furthermore, the complementary concepts
can be separated from the critical concepts. The critical concepts
are made mandatory and the complementary concepts remain
optional, reducing the amount of required reading even further.

Additionally, the steps that explain certain concepts can be
transformed into small tasks by adding extra actions that the
user needs to complete before being able to continue to the next
step or task. This way, concepts can be practiced immediately,
making users more likely to remember them. If users do get lost
somewhere, they can always go back to a previous task to refresh
their memory. Lastly, a progress bar is shown at the bottom.
Besides giving the user an idea of their current progress, it also
gives the user motivation to fill in the entire progress bar. An
illustration of the step-by-step tutorial in VRT 2.0 is shown in
Fig. 17, bottom.

It displays the task name and description as well as the cur-
rent level and task number. The progress bar shows the current
progress in both visual and textual form. The step-by-step tutorial
also contains buttons to go to the previous/next level and the
previous/next task. As can be seen in Fig. 17, bottom, most of the
buttons are in a disabled state. This is the first level, so going back



CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Experimenter

Rlay with the Virtual Ray Tracer for 3 minutes

Points Gatherer
Earn at least 1000 points

Fig. 18. Badges in the new version of Virtual Ray Tracer. The first and third
badge have already been unlocked.

is not possible. The mandatory tasks for this level have not been
completed yet, so the user cannot go to the next level either. The
user is not allowed to go to the next task yet as they first need
to complete the task mentioned in the task description. We have
also added a free (cheat) mode option that allows the user to skip
across tasks and levels. This allows VRT 2.0 to be used in a demo
mode, such as at public engagement events or during lectures,
and to avoid potential frustration of returning users.

5.2. Points and unlockable items

Points in VRT 2.0 can be earned by completing the mandatory
and optional tasks in the step-by-step tutorial. Tasks that are
more difficult and take longer are rewarded with more points,
giving users more satisfaction when finally completing them.
Optional tasks are also rewarded with more points to incentivize
users to complete those tasks as well.

Of course, having lots of points would not be very rewarding
if they could not be used somewhere. VRT 2.0 offers a sandbox
level where users are able to add objects themselves to create
their own scenes. These objects are locked until enough points
have been gathered, after which they become available.

5.3. Badges

Badges are earned by playing with VRT 2.0 for a certain
amount of time, gathering a certain number of points, or creating
a certain number of objects in the sandbox level. The tool has a
notification menu (see Fig. 1, bottom middle) that shows a pop-
up notification whenever a new badge has been earned. Fig. 18
shows the overview of badges in VRT 2.0 available via the main
menu.

In addition, we have added various sounds (such as for earning
badges) and animations (e.g. fading out/in when transitioning
between levels) to VRT 2.0 to create a more fun and engaging
experience.

6. Implementation

We now present an overview of the implementation of VRT
2.0. Readers interested in particular details of our implementation
can find them in Appendix.

The application is implemented in Unity.? Unity is a freely
available game engine that can be used for 2D and 3D applica-
tions. It is widely used, well documented, and there are many
resources online that explain and discuss its various components.

96

Computers & Graphics 111 (2023) 89-102

Ray Visuals
> Ray Manager

Unity Scene

Rays

i

Ray Tracer

Scene Data

Scene Data Changes

Ray Tracer ] User Input

Scene

Translated Scene Data

Scene Manager <

Fig. 19. The design of the general application structure.

This is important for extensibility. Unity also provides build sup-
port for a wide range of platforms, which allows us to make the
application widely available [27].

Conceptually, the application consists of two core compo-
nents: the ray tracer and the 3D Unity application. The ray tracer
takes information about a scene and produces a list of rays traced
in that scene from the camera. The Unity application renders the
scene from a different perspective (that of the user in the interac-
tive application), crucially also incorporating the rays generated
and followed by the ray tracer.

In Unity a scene contains all information regarding the current
state of the application, among others including Ul elements and
rays. Most of this information is irrelevant to the ray tracer: it
only needs to know about the camera, the objects in the scene,
and their materials. As already mentioned, the Unity scene can
change dynamically based on user input.

Our design to meet these requirements is illustrated in Fig. 19.
The Unity application takes input from the user and changes its
internal scene. These changes then need to be sent to the ray
tracer, which uses its own, simpler scene representation (Ray
Tracer Scene in Fig. 19). For this, we include a translation layer that
converts the Unity scene to the format of the ray tracer, which
then outputs a list of rays for the Unity application to draw (via
the Ray Manager).

Our interactivity and performance requirements mean that the
translation from the Unity scene to the ray tracer needs to be
fast. For this, we have implemented the ray tracer using Unity’s
built in ray casting utilities. These utilities work directly with
Unity’s internal scene representation, so the translation layer is
comparably lightweight: it essentially comes down to filtering for
the objects relevant to the ray tracer.

Implementation details regarding the scene and ray managers,
the ray tracing process, ray visualization, acceleration structures,
lighting, gamification, and VRT ports to web and mobile can be
found in the Appendix: Implementation Details.

7. Evaluation

For performance evaluation, we used a laptop running Win-
dows 10 with an Nvidia GTX 1050 GPU and an Intel i7-7700HQ
CPU. With this setup, our application runs at highly interactive
frame rates beyond 100 fps for a virtual screen size of 82 (be-
yond which the presentation becomes significantly cluttered and
some of the novel VRT 2.0 ray visualization/hiding mechanisms
need to be enabled). On low-end systems of some users, lower
(yet still interactive) performance has been noted in the context
of distributed ray tracing (see below). A detailed performance
evaluation can be found in [5].

A series of separate user studies has been conducted to eval-
uate the basic tool as well as novel components in VRT 2.0.
Below, we describe the setup and discuss the results of each
(the respectively reported participant numbers include only those

2 https://unity.com/


https://unity.com/

C.S. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

with successful completions). We present here only overviews of
these studies; please refer to the cited works for details.

Original VRT user study [5]

In this study we had 17 participants, from which 8 had previ-
ously followed the Computer Graphics course. Of the 9 that had
not, 6 were members of the general public with no formal edu-
cation in Computing Science or a related field. The participants
were asked to fill in a survey with a set of questions targeted
at education potential (what they learned) as well as technical
aspects (quality of visuals, ease of use, etc.), and were also given
the opportunity to provide general comments.

The participants generally think that the application helped
them to understand ray tracing better. All computer graphics
students would consider the tool to be helpful for future students
of the course. There were numerous positive comments about the
scenes and the visualization, e.g.: “I really liked how you could
see the rays being traced, how they bounced off of different objects,
and how they refracted. It was a great visual showcase of how ray-
tracing works, and I think students should be able to better learn the
concepts using it.”

However, students with prior experience in ray tracing would
have liked to see more detailed, mathematical explanations of
underlying concepts in the application. One such participant said:
“In context of the CG course I think this would be nice to see as an
introduction to the corresponding topics (shadows, reflections etc.)
however it does lack a bit in the mathematics part of ray-tracing.”

Almost all participants considered the application to be easy
to use. However, it was mentioned by some that they found some
aspects of the application confusing or difficult to understand.
From detailed feedback we saw that controls and user interface
are rated the lowest (with the most potential for improvement).
However, the majority of users still thought they were at least
acceptable.

Overall, the studies show that the tool achieves its educational
purpose concerning computer graphics students and also allows
to reach the general public.

Distributed ray tracing [28]

This user study considered 61 members of the general public
as well as 31 high-school students. We asked the users in six
questions to indicate on a scale of 1 to 5 how much the tool
helped with understanding a certain concept. In addition, two
open questions concerned how the tool helped (or not). Lastly,
we asked the participants what they thought of the complexity of
the tool and if they had any other additional feedback or general
or technical remarks.

For participants belonging to the general public, the differ-
ences between the types of light sources and the idea behind
soft shadows were understood pretty well. However, some strug-
gled with grasping the concept of light attenuation. In gen-
eral, advanced ray visualization options were considered to be
quite helpful, especially ray transparency and contribution-based
ray color. Users with a Computing Science background gener-
ally found the extensions to be very usable and the underlying
concepts to be easy to understand.

For the group of high school students, the tool generally
helped them to understand ray tracing quite well, although some
said that in some cases they struggled with the complexity and
understanding the used terminology. Advanced ray visualization
was particularly appreciated, as has already been noted for the
other groups as well. Some participants remarked occasional
performance issues on older, lower-end computers.

In summary, this extension successfully helps users to un-
derstand distributed ray tracing. The evaluation showed that the
target audience of Computer Graphics students can study with

97

Computers & Graphics 111 (2023) 89-102

the tool very well, also other groups can effectively learn ray
tracing from this application, given some basic knowledge and
interest. The two main obstacles that were observed concerned
the provided descriptions (especially the use of terminology) and
the interaction with the tool (this was found to heavily depend
on prior experience with 3D environments in particular).

Acceleration data structures [29]

We conducted a smaller study with three computer graphics
students who were already familiar with the basics of ray casting.
We asked for comments from the participants via four questions
concerning the visual clarity of the data structures, interaction
with rays and objects, additionally displayed information, and
overall learning experience.

The participants noted that the acceleration data structures are
clearly visualized. Focusing on a single ray and single object helps
in applying the concepts in a smaller scope. The acceleration sta-
tus display works well in illustrating the different cases that can
occur when accelerating ray tracing. However, it was mentioned
that the octree structure does not show clearly at certain angles,
as the lines of wire cubes drawn in the denser areas of the octree
overlap. It was further suggested that changing a 3D object of
the scene and observing the impact of this change could be quite
helpful. Feedback further indicates that more complex setups
considering multiple rays or objects would also be regarded as
beneficial.

Gamification [30]

The user study was conducted with 30 participants from the
general public. We provided a web build for both the original and
new version of VRT, and asked the participants to equally famil-
iarize themselves with both of them for 10 min before answering
multiple choice questions (between two and six response choices,
depending on the question). These asked for feedback regarding
technical aspects, the educational benefit, and the entertainment
value. This was followed by an opportunity to provide open
comments.

In this study we evaluated the differences between the original
(non-gamified) to a new gamified version of VRT. The major-
ity of users (73%) preferred the new version for understanding
ray tracing better, while only 13% preferred the original version
(the remainder stated that they had no preference). The users
that did prefer the original version in this regard mentioned the
(lack of) freedom in the new version compared to the origi-
nal version. Most users found the gamified version to be easier
(77%) and more fun (63%). The percentage of users that experi-
enced issues with the respective tool decreased from 37% in the
original version to 20% in the gamified version. Considering all
factors, generally the majority (77%) preferred the new version
overall. The feedback showed that participants - especially non-
experienced users - found the step-by-step tutorial particularly
helpful.

Mobile version [31]

The user study had 15 participants who belonged to one of
two distinct age groups: eleven were 19-22 years old (students
of Computing Science and related fields), and the remaining four
were members of the general public, aged 45+. Notably, the
participants from the second group had less experience with
computers or mobile devices. This difference is clearly reflected in
the user experience regarding ease of use (see below). The partic-
ipants were asked to comment on the user interface (menus and
panels) and interaction modalities (touchpad navigation) as well
as to provide general feedback about the Android application.

The participants were generally positive about the mobile
adaption of Virtual Ray Tracer. The study particularly focused on



C.S. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

the user interface (UI) that has been revised to be more suitable
for touchscreen usage. Most of the Ul was received well and was
noted to be clear and easy to navigate. 60% of the total partic-
ipants were able to operate the tool without issues. The others
(40%) mentioned they had minor difficulties with either selecting
objects or gizmos. A few participants mentioned the orbiting to
be a bit difficult, but most of the users had no particular problems
with the application after getting used to it. One participant noted
that it was hard to see objects while making adjustments.

The main menu and help menu were also revised for the mo-
bile version and generally well-received by all of the participants.
Overall, they were found to be sized well, clear, and easy to
navigate. Two older Dutch participants from the general public
mentioned that they struggled due to the fact that descriptions
are given in English, providing an indication that offering trans-
lated versions could help to make the tool more accessible for
public outreach.

8. Conclusion

We have presented VRT 2.0, an improved and extended ver-
sion of Virtual Ray Tracer [5], an interactive application that
visualizes ray tracing. It was designed to help with teaching ray
tracing and to be used in the Computer Graphics course taught
at the University of Groningen, but hopefully also beyond that.
We have evaluated the application and its novel features through
several user studies. Regarding the educational potential of the
application, the results are positive. It is clear that visualizing ray
tracing can be of great help in understanding it better. It is also
useful to be able to change ray tracer settings and the properties
of objects in a scene with the visualization updating based on
every change made. This interactivity allows users to experiment
and see how various settings affect the rays being traced.

The novel features in VRT 2.0 include distributed ray tracing
(showcased on area lights and soft shadows), acceleration data
structures (axis-aligned bounding boxes and octrees), gamifica-
tion of the tool, and its ports to web and mobile (Android). This
has addressed most of the original feedback that we received on
VRT [5], such as adding a step-by-step tutorial and options for
decluttering the scenes with too many rays. And it makes our
tool, which remains fully open source [27] (MIT licence), useful in
teaching ray tracing beyond its basics, and also widely applicable
and accessible.

We hope that this will enable a wider adoption of Virtual
Ray Tracer, not only in university courses in graphics, but also
at events aimed at graphics enthusiasts and the general public.

In the future, we plan to incorporate ray tracing also for
rendering the scene visuals. The challenge here is to maintain
high responsiveness of our tool on commodity hardware and
in the web environment. At the same time, using the current
rasterization approach brings secondary benefits: it provides a
direct way of comparing advantages and disadvantages of the two
rendering methods, something very useful in graphics education.

For students of the Computer Graphics course, it could be
useful to extend the application in a way that allows them to
adjust the ray tracing process itself. We also aim to conduct an
extended study with a larger group of participants and evaluate
various learning goals.

In terms of further features and extensions for VRT 2.0, the
following directions sound promising and useful for graphics
education: adding support for textures (potentially both raster
and procedural), incorporating a pseudo-code representation of
the internal ray tracer and (visually) stepping through it in the
scene (something for advanced users and those looking to learn
how to implement ray tracing), and ray marching (which we have
already partly explored [32]).

98

Computers & Graphics 111 (2023) 89-102

Virtual Ray Tracer is fully and openly available on GitHub [27],
which is also where all related material and future updates can
be found.

CRediT authorship contribution statement

Chris S. van Wezel: Software, Investigation, Writing - orig-
inal draft. Willard A. Verschoore de la Houssaije: Software,
Investigation, Writing - original draft. Steffen Frey: Conceptu-
alization, Methodology, Writing - review & editing, Supervision.
Jiri Kosinka: Conceptualization, Methodology, Writing - review
& editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
It is an open-source project, fully available on GitHub.
Acknowledgments

The original VRT tool [5] was based on the BSc theses of the
first two authors at the University of Groningen in 2021. The new
VRT version presented in this paper is further based on the BSc
theses of Peter Jan Blok, Roan Rosema, Bora Yilmaz, and Jesper R.
van der Zwaag at the University of Groningen in 2022.

Appendix. Implementation details

We now present the implementation details of VRT 2.0, and in
doing this also discuss parts which are shared with the previous
version of VRT [5]. The overall program structure was discussed
in Section 6. We now go into the details of the scene and ray
managers, the ray tracing process, ray visualization, accelera-
tion structures, lighting, gamification, and VRT ports to web and
mobile.

A.1. Scene and ray manager

The application is split into the ray tracer and the Unity
application, whereas the Unity application provides the input for
the ray tracer and also handles its output. To better separate these
two components, we have written the Unity side of our code to
contain two important manager objects: the Scene Manager and
the Ray Manager (see Fig. 19).

The scene manager handles the input for the ray tracer. This
means that it manages any changes that are made to the scene
by the user and presents that scene data to the ray tracer. As
discussed in Section 6, the ray tracer is implemented in Unity
and can directly use Unity scene data, so all the scene manager
has to do is to collect this data into one convenient scene ob-
ject. This scene object is simply a list of references to objects
in the Unity scene, but with one important addition: whenever
an object property is modified, an event gets sent to inform
listeners that the scene has changed. These events allow us to
avoid unnecessary calculations when the scene has not changed.

The ray manager handles the output of the ray tracer. It
requests a list of rays from the ray tracer and is responsible for
visualizing those rays. At the start of the application, the ray
manager obtains a reference to the scene manager and the ray
tracer. It subscribes to the events the scene manager sends out
whenever a change is made to the scene. The ray manager also



C.S. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

listens for similar events sent out by the ray tracer whenever its
settings are changed. When either type of event comes in, the
ray manager makes the ray tracer produce a new set of rays.
These new rays are then drawn in the Unity scene, as described
in Appendix A.3.

A.2. Ray tracer

Our ray tracer is based on Whitted’s model [33] with Schlick’s
approximation for refraction [34]. As discussed in Section 6, we
make use of built-in Unity functions for casting rays and deter-
mining object intersections. More precisely, we employ Unity’s
Physics.Raycast function.? It casts a ray from a given point
and returns information about the first object with a Collider
component it intersects. From this we determine the location of
the intersection, the type of object that was intersected and its
material, and all other information that is needed for ray tracing.

Note that our ray tracer’s main output is a set of rays, not
primarily an image. Of course, our ray tracer can still produce an
image, but there is an entire set of functions for generating rays
that is unique to our ray tracer. First of all, the rays themselves
are stored in simple ray objects. These contain the ray’s origin,
direction and length, but also the ray’s type and color. Rays have
types for the purpose of visualization. For example, we want to
be able to distinguish between a ray produced by a reflection and
a ray produced by a refraction. We can thus color the rays drawn
based on their type to make it clear to the user what each ray
does in the scene. Besides its type, the ray object also contains
the color it contributes to its pixel in the final image. This way
we can create an image from a set of rays.

The ray tracer outputs the rays in a tree structure. Because rays
are traced in a recursive fashion, this tree arises naturally: each
recursively called trace function just adds its ray as a child of the
ray of its caller. Each pixel thus corresponds to one tree with the
root ray traced from the camera through the pixel. This means
that the final output of the ray tracer is a list of ray trees (one for
each pixel).

A.3. Ray visualization

As described in Section 4.1.3, we animate the rays by elongat-
ing them in a recursive fashion. One advantage of this approach
is its comparably simple implementation with our organization
of rays in a tree structure (see Appendix A.2). For animation, we
recursively traverse this tree until we find a ray that is not fully
extended and increase its length by a small amount. Doing this
in each frame until all rays are at their full length results in the
desired animation. It is possible to reset the animation back to
the start by going through the ray trees and setting each ray’s
length to zero. Note that this simple approach traverses each ray
tree every frame, while only a few, not fully extended rays may
be of interest in that frame. If needed this could be improved by
maintaining a list of the currently active rays, but the induced
extra cost is negligible overall.

While often a rather small number of rays is shown for the
sake of visual clarity, there are situations where drawing hun-
dreds - up to even thousands - of rays is beneficial. Most impor-
tantly, it shows how the rays, as a collective, bounce around in the
scene, and it can allow the identification of individual rays with
interesting behavior (e.g., a ray bouncing several times before
leaving the scene). It can also help to convey a better impression
of the amount of work involved in ray tracing a high resolution
image.

3 https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

99

Computers & Graphics 111 (2023) 89-102

Drawing a large number of rays does come at a significant
computational cost though, so the ray drawing code needs to
be well designed to handle dynamically generated rays. When
the rays we need to draw have changed since the last frame,
for example due to the camera being moved, we cannot simply
move the existing ray objects in the same direction as the camera
because the structure of the ray trees and the number of rays may
have changed. Unfortunately, the simplest option to destroy the
old ray objects and create new ones in the right positions is not
feasible, as the Unity functions corresponding to these actions,
Destroy? and Instantiate, are not fast enough to handle
hundreds of rays. This means that we need to reuse the already
existing ray objects in the scene, even if the structure of the ray
trees is different from what it was before.

The solution lies in noticing that there is a difference between
the plain data rays produced by the ray tracer and the Unity
scene ray objects used to visualize that data. We can keep the
ray objects around when the ray trees change, but we need to
update their positions and colors to match the new data, and we
may also have to hide some objects if the total number of rays
has decreased. This can be achieved through the use of a so-called
object pool.

An object pool is a design pattern commonly used in Unity
applications when a lot of instances of the same type of object
have to frequently be created and destroyed. It works by keeping
a large number of instances of the object in a pool. When a new
object needs to be created we instead activate an unused one
from the pool, and when it needs to be destroyed we deactivate it.
Because activating and deactivating an object is much faster than
creating or destroying it, this significantly improves performance.

In our application we store the ray objects in such a pool.
When a new set of rays comes in from the ray tracer, we take
one ray object from the pool for each ray, activate it, and set its
position and color to reflect the ray. If there are ray objects in the
pool that are still active from before but are not being used for the
new rays, they are deactivated. This allows us to update hundreds
of rays every frame while maintaining good frame rates.

In order to support all new ray visualization in VRT 2.0 (as de-
scribed in Section 4.1.3, see Fig. 11), certain properties need to be
added to the object that stores ray information (the RayObject).
This includes the contribution of the ray on the final pixel color.
This cannot be fully determined while tracing the individual rays.

The parent’s color depends on the material interaction at the
hit-point plus any color returned by child rays. So once a parent
ray is done tracing all child rays, we can set the contribution for
all child rays with respect to the parent. This is important because
if each ray knows its contribution with respect to its direct parent,
we can recursively determine its contribution to the final pixel
color.

To make rays transparent, they need new materials that are
transparent instead of opaque. This is in general more computa-
tionally expensive than opaque rays. However, we noticed that
if we remove all components except the ambient component of
the transparent materials, it makes them actually faster to render
than opaque rays, and the lack of diffuse and specular reflections
on transparent rays is barely noticeable. We have added two
options to the ray tracer properties panel with which the user
can control ray transparency: a toggle to enable ray transparency
and a slider to set the level of transparency. If ray transparency
is enabled, the RayManager will assign transparent materials to
the rays instead of opaque materials. Every ray gets a unique
material as the level of transparency depends on both the ray’s

4 https://docs.unity3d.com/ScriptReference/Object.Destroy.html
5 https://docs.unity3d.com/ScriptReference/Object.Instantiate.html


https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Object.Destroy.html
https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

C.S. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

contribution to the pixel’s color and how transparent the user
wishes the rays to be.

To handle dynamic ray radii, we give the user three extra
controls: a toggle to enable dynamic ray radius and two sliders
for the minimal and maximal ray radius. If the user wishes the
ray’s radius to be dynamic, the aforementioned function returns
a radius between the minimal and maximal radius based on
the ray’s contribution. Otherwise it returns the rayRadius. The
way this is implemented gives the user another unique way of
visualizing the rays, as the minimal ray radius does not have to be
smaller than the maximal radius. If this is not the case, negligible
rays are simply bigger than important rays, which gives the user
the ability to easily find rays that contribute almost nothing.

The ray tracer already stores the color that each ray con-
tributes to the pixel in each Ray0Object. Just like the RayManager
can return a unique transparent material for each ray, it can
also give a uniquely colored material for each ray, optionally
also transparent. We add yet another toggle to the ray tracer
properties panel to enable contribution-based ray colors. If this
toggle is enabled, the RayManager will not return a material
based on the RayObject’s type, but on the color it contributes
to the pixel.

A.4. Acceleration structures

The two acceleration data structures that we have incor-
porated into VRT 2.0 are axis-aligned bounding boxes (AABB;
Section 3.2.1) and octrees (Section 3.2.2). They are utilized in
levels (two for each) dedicated to acceleration as described in
Section 3.2. In the tool, the ray traced objects within the scene are
RTMesh objects with a MeshRenderer component, via which the
bounds property is accessible as a Bounds class object. This gives
us the AABB and also the root node of the octree of the object.

In order to utilize the AABB to accelerate ray tracing, we need
to check whether a ray intersects the AABB before checking for in-
tersection with the object itself. We also keep track of the number
of AABB misses so that this information can be conveyed to the
user. Compared to the AABB, the calculations using an octree are
more complex. To make the abstraction clearer, we implemented
three classes: Octree, OctreeRoot, and OctreeNode. The root
node is basically the AABB itself, which is then recursively subdi-
vided into nodes until a certain depth limit has been reached or
the processed nodes are empty.

In both cases, the visualization (see Fig. 12) is handled by the
Popcron Gizmos package [35], which allows for run-time draw-
ing. To offer feedback to the user, there are three visualization
components implemented in order to visualize how the AABB
accelerates the ray casting: acceleration status bar; number of
rays ignored bar; hitpoint sphere on the AABB. The acceleration
status bar indicates to the user if the ray has been ignored, has hit
the AABB, or has hit the object or not. It updates as the object or
camera is moved around by the user. The number of rays ignored
bar is responsible for displaying the number of rays that were not
considered while rendering an image. Finally, the hitpoint sphere
is seen on the AABB as a green dot only when the ray intersects
the AABB. This helps with showing that the ray intersects the
AABB, even though the location of the intersection point is not
necessarily important for acceleration.

A.5. Lighting

As described in Section 4.1.2, VRT 2.0 supports two new types
of lights. The first step to this end was to generalize lights. While
some light properties are shared (position and color), some, such
as rotation, are not. To this end, we have introduced an abstract
base class RTLight from the RTPointLight class, made the

100

Computers & Graphics 111 (2023) 89-102

RTPointLight class extend the RTLight class, and moved all
properties to the base class and left only point light specific
properties in the RTPointLight class. We also introduced a new
enum field RTLightType so when lights are accessed, their type
can always be determined.

A5.1. Area lights

Unity’s rendering pipeline used for VRT does not support real-
time area lights. This is not an issue as we want to have direct
control over the sampling of area lights for education and visual-
ization purposes. Hence, we use a number of Unity’s spot lights
to approximate an area light. We first created an RTArealLight
object in Unity, a prefab that has an image of a rectangle.

Next, we introduced a lightSamples variable and make the
script distribute Unity’s spot lights over the area light’s area. The
RTAreaLight object itself has a position, rotation, and scale. If
we add sub-objects, so-called children, they are also impacted
by these properties. So if the RTAreaLight prefab is a 1-by-1
rectangle with the front-facing along the positive z-axis, we can
simply place spot lights accordingly in this rectangle and they will
automatically be positioned and rotated correctly in the scene.
We uniformly distribute a total number of lightSamples *
lightSamples Unity spot lights over the area (see Section 3.1.1),
make them face along the positive z-axis and they will illuminate
the scene correctly.

The next step is to incorporate this in the ray tracer. We
use jittered sampling to approximate the area light’s illumina-
tion. With jittered sampling, we divide the area light’s area in
lightSamples * lightSamples equally sized rectangles and
take a random point within each rectangle. So when we ray trace
an area light, we take a total of lightSamples*xlightSamples
samples from the area light and treat each sample exactly like we
would treat a spot light, except this time we divide their intensity
by the number of samples.

When 52 = 25 or more samples are used and they all reach
the light source, we combine them into a single area-ray, see
Fig. 8. This reduces the number of rays significantly and im-
proves performance. This also means that we had to change the
RayObjectPool to support two different types of ray objects. As
this area-ray is a big object, it is always transparent.

A.5.2. Spot lights and attenuation

To model spot lights, we simply combined features from the
point and area lights as detailed above. We opted to use 0.04 +
0.1d + 0.06d? for distance d attenuation. (Note that the typical
scene’s bounding box diameter is in the order of tens of units.)
Light objects have their own properties panel that the user can
access by selecting the light, and in order to better visualize
the difference this makes, we added a toggle to this panel to
enable/disable light-distance attenuation per light.

Angle attenuation only applies to the spot and area lights.
As usual, we model this kind of attenuation by multiplying the
intensity by cos(«)P, where « is the angle between the light's
direction and the direction to the point from the light, and p is
a non-negative exponent controllable by the user.

These two attenuation methods decrease a light’s intensity,
but there was no option to increase it. We allow for increasing
the intensity of each light by simple multiplication via a slider in
the light object properties panel. A complete overview of all the
light properties can be found in Fig. 20.

A.6. Gamification
The step-by-step tutorial is created as a Prefab with a Tutorial

Manager script attached to it, and added to the Main Canvas.
Tasks for each level are stored in a list along with helper functions



CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

Ray Tracer Camera Object

Light Settings

Position

Rotation

Scale

Color

Intensity

Ambient

Diffuse

Specular

Light Samples

Spot Angle

Angle Attenuation

Point
Point
Spot
Area

Fig. 20. A screenshot of all possible light properties in VRT 2.0. Some properties
are not visible or available for certain light types.

Introduction

3. Re

Refraction

Spot Lights
ed Lights - Area Lights

10. More Advanced Ray Tracing

Aligned Bounding B

ligned Bounding B

Fig. 21. The complete list of levels available in VRT 2.0.

to, for example, increment the current level’s task index. These
tasks are then stored inside the Game Manager, so we can store
the progress for each level when switching between levels (their
complete list is shown in Fig. 21). This way, the Tutorial Manager
is also able to retrieve the current task information and update
the tutorial’s Ul accordingly.

Whenever a user has to complete a task by executing an
action, we need some way of associating this action with the
task. We do this by adding the same identifier to the task and
the action. When a user executes a specific action (e.g. clicks on
the Help button), we send this identifier to the Tutorial Manager.
If the identifier matches the current task’s identifier, the task is
completed and the Ul is updated.

101

Computers & Graphics 111 (2023) 89-102

Badges are stored in a list in the Game Manager with each
badge containing a type, name, description, icon, and a number
that determines when a badge is earned. In the badge collection
menu, we simply create all available badges listed in the Game
Manager’s badge list. A badge that has not been earned yet is
indicated by a disabled-looking state and barely readable text.
In the badge notification menu, we continuously loop over each
badge and check whether they have been earned since our last
check. If so, the user receives a notification displaying the newly
earned badge.

A.7. Web and mobile

Unity supports porting an application to WebGL [23], a 3D
graphics library/API which allows browsers to efficiently render
3D scenes. The rendering is client-based; the scene is usually
downloaded from a server, after which the processing of the
scene is done locally using the client’s hardware [36]. The web
build is available at [22]. The web port worked out of the box,
and, unlike the mobile port, required no UI or other changes.

Porting to Android [21] also in principle worked directly, but
it required several usability changes, as detailed in Section 4.2.1.
As already mentioned, it is important to note that while the
web version is based on VRT 2.0, the mobile version is, due to
performance and screen-space limitations, based on the original
VRT tool [5].

References

[

Haines E, Akenine-Moller T, editors. Ray tracing gems. Apress; 2019, http:
/[raytracinggems.com.

Marrs A, Shirley P, Wald I, editors. Ray tracing gems II. Apress; 2021,
http://raytracinggems.com/rtg2.

Marschner S, Shirley P, editors. Fundamentals of computer graphics. CRC
Press; 2021.

Deng Y, Ni Y, Li Z, Mu S, Zhang W. Toward real-time ray tracing: a survey
on hardware acceleration and microarchitecture techniques. ACM Comp
Surv 2017;50(4):58:1-41.

Verschoore de la Houssaije WA, Wezel CSv, Frey S, Kosinka J. Virtual ray
tracer. In: Bourdin -], Paquette E, editors. Eurographics 2022 - education
papers. The Eurographics Association; 2022, p. 45-52.

Simons G, Herholz S, Petitjean V, Rapp T, Ament M, Lensch H, et al
Applying visual analytics to physically based rendering. Comput Graph
Forum 2019;38(1):197-208.

Simons G, Ament M, Herholz S, Dachsbacher C, Eisemann M, Eisemann E.
An interactive information visualization approach to physically-based ren-
dering. In: Vision, modeling & visualization. The Eurographics Association;
2016.

Spencer B, Jones M, Lim I. A visualization tool used to develop new photon
mapping techniques. Comput Graph Forum 2015;34(1):127-40.

Zirr T, Ament M, Dachsbacher C. Visualization of coherent structures of
light transport. Comput Graph Forum 2015;34(3):491-500.

Smyk M, Szaber M, Mantiuk R. JaTrac — an exercise in designing edu-
cational raytracer. In: Advanced computer systems: eighth international
conference. Springer; 2002, p. 303-11.

Vitsas N, Gkaravelis A, Vasilakis A, Vardis K, Papaioannou G. Rayground: an
online educational tool for ray tracing. In: Romero M, Sousa Santos B, edi-
tors. Eurographics 2020 - education papers. The Eurographics Association;
2020.

Russell J. An interactive web-based ray tracing visualization tool [Under-
graduate Honors Program Senior thesis], Department of Computer Science,
University of Washington; 1999.

Gribble C, Fisher J, Eby D, Quigley E, Ludwig G. Ray tracing visualization
toolkit. In: Proceedings of ACM SIGGRAPH. ACM; 2012, p. 71-8.

Cook RL, Porter T, Carpenter L. Distributed ray tracing. SIGGRAPH Comput
Graph 1984;18(3):137-45.

Shirley P, Marschner S. Fundamentals of computer graphics. 3rd ed USA:
A. K. Peters, Ltd.; 2009.

Fujimoto A, Tanaka T, Iwata K. ARTS: accelerated ray-tracing system. IEEE
Comput Graph Appl 1986;6(4):16-26.

Reiners T, Wood LC. Gamification in education and business. Cham,
Switzerland: Springer; 2015.

Nicholson S. Strategies for meaningful gamification:
hind transformative play and participatory museums.
2012;1999:1-16.

[2]

3

[4

(5

[6

[7

[8

19]

[10]

(1]

[12]

[13]
[14]
[15]
[16]
[17]

[18] Concepts be-

Mean Play


http://raytracinggems.com
http://raytracinggems.com
http://raytracinggems.com
http://raytracinggems.com/rtg2
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb3
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb3
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb3
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb4
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb4
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb4
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb4
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb4
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb5
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb5
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb5
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb5
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb5
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb6
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb6
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb6
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb6
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb6
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb7
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb7
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb7
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb7
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb7
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb7
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb7
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb8
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb8
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb8
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb9
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb9
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb9
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb10
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb10
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb10
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb10
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb10
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb11
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb11
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb11
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb11
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb11
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb11
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb11
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb12
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb12
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb12
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb12
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb12
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb13
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb13
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb13
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb14
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb14
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb14
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb15
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb15
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb15
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb16
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb16
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb16
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb17
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb17
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb17
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb18
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb18
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb18
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb18
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb18

CS. van Wezel, W.A. Verschoore de la Houssaije, S. Frey et al.

[19]

[20]
[21]
[22]
[23]

[24]

[25]

[26]

Meister D, Ogaki S, Benthin C, Doyle M], Guthe M, Bittner J. A survey
on bounding volume hierarchies for ray tracing. Comput Graph Forum
2021;40(2):683-712.

Phong B. Illumination for computer generated pictures. Commun ACM
1975;18(6):311-7.

SVCG. Virtual ray tracer. 2022, Google Play, https://play.google.com/store/
apps/details?id=com.RUG.VirtualRayTracer.

van Wezel C, Verschoore W. Virtual ray tracer (web version). 2022, URL:
https://wezel.github.io/Virtual-Ray-Tracer/.

Documentation U. Building and distributing a WebGL project. 2022, https:
//docs.unity3d.com/Manual/webgl-building-distribution.html.
Documentation U. Porting a project between platforms.
https://docs.unity3d.com/520/Documentation/Manual/HOWTO-
PortingBetweenPlatforms.html.

Hennessey B, Moran S, Altringer B, Amabile TM. Extrinsic and intrinsic
motivation. In: Wiley encyclopedia of management. John Wiley & Sons,
Ltd; 2015, p. 1-4.

Deci EL, Ryan RM. Self-determination theory. In: Handbook of theories of
social psychology: volume 1. 1 Oliver’s Yard, 55 City Road, London EC1Y
1SP United Kingdom: SAGE Publications Ltd; 2014, p. 416-37.

2022,

102

[27]
[28]
[29]
[30]

[31]

[32]
[33]
[34]
[35]

[36]

Computers & Graphics 111 (2023) 89-102

van Wezel C, Verschoore W. Virtual ray tracer. 2022, URL: https://github.
com/wezel/Virtual-Ray-Tracer.

van der Zwaag J. Virtual ray tracer: distribution ray tracing [BSc thesis],
University of Groningen; 2022, https://fse.studenttheses.ub.rug.nl/27881/.
Yilmaz B. Acceleration data structures for virtual ray tracer [BSc thesis],
University of Groningen; 2022, https://fse.studenttheses.ub.rug.nl/27838/.
Blok PJ. Gamification of virtual ray tracer [BSc thesis], University of
Groningen; 2022, https://fse.studenttheses.ub.rug.nl/27596.

Rosema R. Adapting virtual ray tracer to a web and mobile application [BSc
thesis], University of Groningen; 2022, https://fse.studenttheses.ub.rug.nl/
27894.

Bredenbals A. Visualising ray marching in 3D. Master’s internship report,
University of Groningen; 2022, https://fse.studenttheses.ub.rug.nl/27977/.
Whitted T. An improved illumination model for shaded display. Commun
ACM 1980;23(6):343-9.

Schlick C. An inexpensive BRDF model for physically-based rendering.
Comput Graph Forum 1994;13(3):233-46.

popcron. gizmos ReadMe. 2019, https://github.com/popcron/gizmos/blob/
master/README.md.

Cantor D, Jones B. WebGL beginner’s guide. Birmingham, UK: Packt
Publishing; 2012.


http://refhub.elsevier.com/S0097-8493(23)00006-7/sb19
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb19
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb19
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb19
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb19
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb20
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb20
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb20
https://play.google.com/store/apps/details?id=com.RUG.VirtualRayTracer
https://play.google.com/store/apps/details?id=com.RUG.VirtualRayTracer
https://play.google.com/store/apps/details?id=com.RUG.VirtualRayTracer
https://wezel.github.io/Virtual-Ray-Tracer/
https://docs.unity3d.com/Manual/webgl-building-distribution.html
https://docs.unity3d.com/Manual/webgl-building-distribution.html
https://docs.unity3d.com/Manual/webgl-building-distribution.html
https://docs.unity3d.com/520/Documentation/Manual/HOWTO-PortingBetweenPlatforms.html
https://docs.unity3d.com/520/Documentation/Manual/HOWTO-PortingBetweenPlatforms.html
https://docs.unity3d.com/520/Documentation/Manual/HOWTO-PortingBetweenPlatforms.html
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb25
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb25
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb25
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb25
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb25
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb26
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb26
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb26
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb26
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb26
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://github.com/wezel/Virtual-Ray-Tracer
https://fse.studenttheses.ub.rug.nl/27881/
https://fse.studenttheses.ub.rug.nl/27838/
https://fse.studenttheses.ub.rug.nl/27596
https://fse.studenttheses.ub.rug.nl/27894
https://fse.studenttheses.ub.rug.nl/27894
https://fse.studenttheses.ub.rug.nl/27894
https://fse.studenttheses.ub.rug.nl/27977/
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb33
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb33
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb33
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb34
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb34
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb34
https://github.com/popcron/gizmos/blob/master/README.md
https://github.com/popcron/gizmos/blob/master/README.md
https://github.com/popcron/gizmos/blob/master/README.md
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb36
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb36
http://refhub.elsevier.com/S0097-8493(23)00006-7/sb36

	Virtual Ray Tracer 2.0
	Introduction
	Related Work
	Background
	Distributed Ray Tracing
	Super-Sampling
	Soft Shadows

	Bounding Volumes for Acceleration
	Axis Aligned Bounding Boxes
	Octrees


	The Application
	Visuals
	Scene Visuals and Rendering
	Lights
	Ray Visualization
	Acceleration Structures

	Settings and Controls
	Mobile Controls


	Gamification
	Step-by-step Tutorial
	Points and Unlockable Items
	Badges

	Implementation
	Evaluation
	Original VRT user study VRTEG22
	Distributed ray tracing VRT-Jesper
	Acceleration data structures VRT-Bora
	Gamification VRT-PJ
	Mobile version VRT-Roan


	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Implementation Details
	Scene and Ray Manager
	Ray Tracer
	Ray Visualization
	Acceleration Structures
	Lighting
	Area Lights
	Spot Lights and Attenuation

	Gamification
	Web and Mobile

	References


