
L. v. d. Wal, P. Blesinger, J. Kosinka, & S. Frey / VVRT: Virtual Volume Raycaster 1 of 4

Supplementary Material

We begin by discussing our implementation of VVRT. First, we re-
view relevant features from the original Virtual Ray Tracer (VRT),
before highlighting new additions in VVRT to support raycasting
in Virtual Ray Tracer. Finally, we supplement some details corre-
sponding to the evaluation.

1. Relevant Virtual Ray Tracer Features

In this section, we go over two notable features in Virtual Ray
Tracer that we changed or used differently than the original.

1.1. Ray Trees

Virtual Ray Tracer uses RayTrees to visualize rays. A RayTree con-
sists of the 0-length base ray and all its subrays. In a standalone
application, this structure would not be needed for the Raycaster,
since raycasting rays never reflect or refract. To avoid duplicate
code with the Virtual Ray Tracer, the datatype for a ray is kept the
same.

We have chosen to use the RayTrees, but not quite as intended.
In the Raycaster a ray is represented as a RayTree with 4 parts:
the first part is the same 0-length base ray, the second part is the
ray section before entering the voxel grid, the third part is the ray
section inside the voxel grid, and the last part is the ray section after
the voxel grid. In this way, we can give different properties to the
ray sections to help visualize them better without having to change
any data types.

1.2. Trace Functions

There are two main tracing functions in the ray tracer. Trace is
used for visualizing rays and it returns a rayTree. rayTrees
can be used to draw a ray and its subrays. TraceImage on the
other hand is used for generating a high-resolution image. It re-
turns a color that is to be displayed on the relevant pixel. In these
trace functions the main ray tracing algorithms can be found. We
of course do not want to perform ray tracing, since our aim is ray-
casting. Therefore, these functions needed to be changed. Trace
is replaced by CastVisualizableRay. TraceImage keeps
the same name, but using inheritance it is overwritten.

The raycasting algorithm is performed in CastRay. CastRay
returns a single RCRay, which is a child class of RTRay with some
additions, such as a list of samples and compositing methods. Both
CastVisualizableRay and TraceImage use CastRay to
perform raycasting, then transform the returned RCRay into the
appropriate data type.

2. Extended Classes

Because we are re-using a lot of functionality from the ray tracer,
but we do not want to modify it, we decided to use inheritance. This
way we can change relevant classes without changing the original
ray tracing levels. There were 4 classes from the virtual ray tracer
that we extended using inheritance.

• RayManager→ RayCasterManager
In this class the drawing of the rays is handled. Because we
needed to draw samples as well as the rays we had to change
the drawing methods.

• RTRay→ RCRay
In RTRay the information about a (sub)ray is stored. A ray-
casting ray has more information, like samples, that need to be
stored. For this we made RCRay.

• UnityRayTracer→ UnityRayCaster
In this class the ray tracing/casting algorithms are implemented.
Since our aim is to perform raycasting instead of ray tracing we
overwrite the trace methods.

• RayTracerProperties→ RayCasterProperties
In RayTracerProperties the control panel input and
output is handled. Since the Raycaster has some overlap-
ping controls, but also some new ones, we made a child
class. We then added the new controls to the child class
RayCasterProperties, and we deactivated any controls
that we did not want to use in the unity editor.

3. New Classes

New classes have also been added to the application. These classes
are only related to raycasting and are not tied to the ray tracing
levels in any way.

• VoxelGrid
To represent our voxel grid data in Unity we made a prefab. A
prefab in Unity is a template with properties and settings that can
be reused in multiple scenes. To this prefab, we added a trans-
parent cube object to show in the scene. We also added the class
VoxelGrid to represent our data.

• RayCalculationBreakdown
This class handles the Ray Calculation Window. Its variable
breakdown part is static and is simply a text box. The formu-
las are 4 pre-made images that are saved as sprites. When the
compositing method is changed the relevant formula image is
displayed.

• Sample, SampleObject, SampleObjectPool, and
SampleRenderer
These four classes together handle the samples. Sample itself
is the data of a sample. SampleObject is a sample object in
Unity space. SampleRenderer is tied to a sample object and
draws it. SampleObjectPool is used for optimization.
There are many of these samples at a given time and to keep the
application running smoothly we use the object pool. We start
with an initial number of 128 samples. These samples are loaded,
but set to inactive and therefore invisible. If more than 128 sam-
ples are needed they are created, but not destroyed, so they can
be reused as well. The SampleObjectPool handles activat-
ing, deactivating and creating new samples.

4. 3D Texture Generation

To create a 3D texture for each voxel grid, we created a utility script
for developers of VRT to turn any new voxel grid file into a corre-
sponding 3D texture. It can be run from within the Unity develop-
ment environment without running play mode; see Fig. 1.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



2 of 4 L. v. d. Wal, P. Blesinger, J. Kosinka, & S. Frey / VVRT: Virtual Volume Raycaster

Figure 1: The script can be executed from the Editor

There is also a script in place to store pre-computed normals for
voxel grids, facilitating more efficient lighting calculations in the
future, but it is not yet in use.
First, the developer needs to manually adjust the dimensions of the
voxel grid that is to be processed. Next, they input the file path
of the ‘.raw’ file in which the voxel grid for Virtual Raycaster is
stored.
Upon startup, the script then creates a new 3D texture and loops
through each texel, saving the density from the ‘.raw’ file in the
alpha channel of the texel’s color. Changes to the texture are then
applied and the new Asset is saved in the Resources folder with a
file name specified by the developer.

An auxiliary script is attached to the voxel grid object, which
enables the generation of the main camera’s depth texture, needed
for depth testing and correct blending of the volume and geometric
objects.

5. Raycasting Shader

5.1. Shader Properties

The shader’s properties are its variables which are exposed to the
Unity environment and can be edited by other scripts, providing an
endpoint where synchronized variables can be passed along.

• _MainTex: The 3D texture containing the density values for
raycasting.

• _MinDensity: A threshold below which density values are ig-
nored.

• _StepSize: The distance between each sample along the ray.
• _AlphaCutoff: Maximum allowed opacity for compositing.
• _CompositingFunction: Determines which compositing

method is used (0 for Accumulate, 1 for Maximum, 2 for Av-
erage, 3 for First).

• _TargetDens: Target density for the first compositing
method.

• _Transfer1 to _Transfer5: Lookup table parameters for
color transfer.

• _Transfer1c to _Transfer5c: Color values used for map-
ping densities to colors.

5.2. Blending Operations

The shader includes some settings to ensure that the voxel grid
blends correctly with other geometry:

• ‘Queue’ = ‘AlphaTest’ puts the object at position 2450
in Unity’s render pipeline, after all opaque objects, to ensure that
they are in the depth buffer before the shader executes.

• ZWrite Off disables writing to the depth buffer, to treat it as
a transparent object.

• ZTest LEqual sets built-in depth testing conditions. (This is
separate from the custom depth test described above for vol-
ume/geometry blending.)

• Blend SrcAlpha OneMinusSrcAlpha Sets the combi-
nation of the output of the fragment shader with the render target
to premultiplied transparency.

5.3. Vertex Shader

The vertex shader performs three tasks:

• Prepares the object vertex by converting it to object space, in
order to set a starting point for our ray marching ray.

• Calculates the unit vector from the camera to the object, which
will determine the direction of the ray in the fragment shader.

• Calculates the vertex’s clip position, which is needed to get the
screen UV coordinates to sample the depth texture.

5.4. Central Differences

To compute normals for lighting, the centralDiffmethod com-
putes a vector composed of the differences in density between vox-
els along all axes, given a delta value which determines the distance
from the point for which the normal is to be estimated. At this dis-
tance, in both directions, samples are taken and the two samples
are subtracted from each other. As for each axis such a difference
is computed, the three differences together create a vector which
serves as a surface normal.

This means that, mathematically speaking, the gradient of the
scalar field is approximated using the following central differences
formula for each axis:

N =

ρ(x+∆,y,z)−ρ(x−∆,y,z)
ρ(x,y+∆,z)−ρ(x,y−∆,z)
ρ(x,y,z+∆)−ρ(x,y,z−∆),

 (1)

where:

• ρ is a function representing the sampling of density from the
voxel grid;

• ∆ is a given offset.

Once the normal vector is calculated, it needs to be normalized (to
a length of 1) before it can be used for illumination.

5.5. Fragment Shader

The first meaningful calculation the fragment shader performs is
determining the number of samples taken per ray, by taking the step
size (the distance between each sample, given by the user in terms
of voxels, then converted to Unity units) and dividing the diagonal
of (and therefore longest distance across) the voxel grid by it. After
this step count is established, a loop runs through each sample po-
sition, samples the 3D texture to get a corresponding density value
and applies the selected compositing function.
Afterwards, the Transfer function is applied to output the desired
color.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



L. v. d. Wal, P. Blesinger, J. Kosinka, & S. Frey / VVRT: Virtual Volume Raycaster 3 of 4

6. Controls

We expanded the control panel of the ray tracer with new settings
and hid some controls that are irrelevant or incompatible with ray-
casting. The controls that the Ray Tracer and Raycaster do share
are:

• Hide no hit rays
• Animate rays
• Animate sequentially
• Loop animation
• Animation speed
• Supersampling
• Supersampling animation
• Render image
• Open image
• Fly to virtual camera

Some of the new controls have already been mentioned: selecting a
voxel grid, selecting a compositing method, and changing the trans-
fer function. These are the bare controls that are needed for raycast-
ing. To allow for experimenting with the application and different
visualization styles we added four more settings described below.

7. Lighting

Phong illumination is a model used to simulate the way light inter-
acts with surfaces to create illumination effects. It involves calcu-
lating three types of light reflection: ambient, diffuse, and specular.
Below is a brief breakdown of each component:

• Ambient Reflection:

– Represents the constant, non-directional light present in the
scene, ensuring that objects are not completely dark even if
they are not directly illuminated.

– Calculated as:

Iambient = kambient · Iambient,

where kambient is the ambient reflection of the surface, and
Iambient is the intensity of ambient light.

• Diffuse Reflection:

– Models the scattering of light in all directions when it hits
a rough surface. The intensity varies with the angle between
the light vector and the surface normal.

– Calculated using Lambert’s cosine law:

Idiffuse = kdiffuse · Ilight ·max(0,L ·N),

where kdiffuse is the diffuse reflection, Ilight is the luminosity
of the light, L is the light vector, and N is the normal vector
of the surface, both normalised.

• Specular Reflection:

– Simulates the bright spots of light that appear on shiny sur-
faces where the light is reflected directly to the viewer. It de-
pends on the viewer’s angle and the light reflection direction.

– Calculated using the Phong reflection model:

Ispecular = kspecular · Ilight · (max(0,R ·V))α,

where kspecular is the specular reflectance, R is the reflection

CPU Graphics Card Avg. FPS
Ryzen 5950x RTX 3080 360[R]

Ryzen 5800x3D RTX 3080 144[R]

Table 1: Frames per second average at default settings.

Type File Size Ryzen 3700x,
RTX 2070

Ryzen 5950x,
RTX 3080

Bucky 0.032MB 0.30s 0.11
Bunny 92MB 6.99s 1.96
Engine 16MB 4.23s 0.69
Hazelnut 131M 17.08s 3.45

Table 2: Loading times in seconds for different data and hardware.

vector of the light, V is the view direction, and α is the shini-
ness exponent controlling the size of the specular highlight.

• Final Color Calculation:

– The final color of a point is the sum of ambient, diffuse, and
specular contributions:

Ifinal = Iambient + Idiffuse + Ispecular.

8. Live Raycasting User Study Instructions

We provided participants with the following instructions:
Open Virtual Ray Tracer.exe, select Levels, then 15. Ray
Casting.

Follow the Tutorial on the bottom left of the screen twice:

1. On the first playthrough, disable the "Show Preview"
function (at the very bottom of the right menu, as explained
in the tutorial).

2. On the second, leave it enabled and see how it changes
your experience.

Next, fill out this questionnaire.

9. Performance

Our measurements show that with modern hardware we even yield
frame rates hitting the monitor’s refresh rate (marked with an [R]
in Table 1). Frame rates were tested with the Bunny dataset at a
sample distance corresponding the size of a voxel, all other settings
were left at their default values. The loading times of different
datasets are listed in Table 2. While this can take up to several
seconds depending on hardware and data, it can still be considered
fast enough for a user to do this during an exploration session.

10. User Study Comments: Raycasting Process

• "As non-experts, we don’t yet fully understand what we’re do-
ing. Perhaps start by explaining the purpose and what it aims to
achieve. What are we working toward, and what is the end goal?"

• "Render preview pixels only became clear to us in the final step."

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 4 L. v. d. Wal, P. Blesinger, J. Kosinka, & S. Frey / VVRT: Virtual Volume Raycaster

• "I quickly played around with the application and found it quite
interesting! [...] Here are some suggestions [...]:

– It would be nice to see the voxel grid (bucky, bunny, etc.) in
some way inside of the unit cube [...]

– The 5 parameters below the plot of the transfer function don’t
have labels. It’s better to indicate what they’re for exactly.

– Is "bucky" the same dataset as the CUDA volume renderer
example uses? If so, then such an abstract dataset may not be
a good initial choice. [...]"

• "Great addition! I think you could make it even better by having
a couple of "scenarios", where you tell the user how to set up
the ray caster. E.g. only visualize the surface, or only visualize
the most dense parts of a volume. One feature you could also
consider is to visualize the voxel grid in some way, so you can
see where the rays sample the volume (this is a nice to have)."

Here we see the request to create the live raycasting feature which
has since been implemented. Additional suggestions are clearer ex-
planations of the goal of ray casting, as well as creating multiple
levels where the user will aim to visualize different aspects of a
dataset. Overall the comments were positive with ideas for future
improvements and features.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.


