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About the project

Prior studies have demonstrated the potential for enhanced dimensionality re-
duction (DR) and clustering performance using machine learning, specifically
through the utilization of autoencoders for feature extraction, as compared to
conventional DR techniques such as PCA, t-SNE, and UMAP [3]. Moreover,
research in this domain has also revealed that methods incorporating labeled
information tend to outperform their unsupervised counterparts, leading to im-
proved clustering separation and other advantageous properties [2]. Notably,
certain approaches, as presented in [8], permit the integration of unsupervised
dissimilarity mixture functions into various types of autoencoders, enabling
high-accuracy clustering and unsupervised classification.

This project aims to perform dimensionality reduction (DR) and clustering
utilizing diverse types of autoencoders, including Vanilla, Sparse, Variational
(VAE) [7], beta-Variational (β-VAE) [6], and Wasserstein (WAE) [12], within
a self-supervised framework leveraging partially labeled ensemble data. These
tasks can be achieved not only through convolutional neural networks (CNNs)
but also by employing Transformer architectures [1]. The novelty of this project
lies in the innovative approach of reformulating unsupervised reconstruction
losses associated with the listed autoencoder variants into joint losses that in-
corporate available class information (labels). This strategic integration allows
for the inclusion of dissimilarity measures and enhances clustering results by
utilizing autoencoder-extracted features for scientific ensembles.

To assess the performance of the proposed self-supervised approach, cluster-
ing results, particularly 2D projections, will be compared with benchmarks like
the supervised version of t-SNE which incorporates a dissimilarity measure [5],
that can serve as a baseline. To evaluate the clustering quality, metrics such as
neighborhood hit [13] and silhouette [10] will be employed. These metrics are
commonly used for assessing the effectiveness of clustering algorithms.
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Research steps

1. Obtaining partially labeled subsets of scientific ensembles.

2. Performing fine-tuning of a pre-trained EfficientNet classifier [11] to gen-
erate pseudo-labels for the unlabeled data subset.

3. Implementing various autoencoder variants, including Vanilla, Sparse, Vari-
ational, and Wasserstein, for the reconstruction task, following a similar
approach to [3].

4. Experimenting with the addition of metric-based loss functions, such as
neighborhood hit or silhouette scores, alongside the autoencoder loss.

5. Alternatively experiment in adding class information to the loss functions:

• start by reproducing results similar to [2],

• add classifier loss to autoencoder variants listed above,

• experiment adding supervised dissimilarity measure from [5] to the
autoencoder variants,

• investigate unsupervised dissimilarity loss benefits from [8] for au-
toencoder based clustering,

• finally integrate all loss components (reconstruction, regularization,
classification, dissimilarity) for each autoencoder variant.

6. Training:

• begin with benchmark datasets, such as MNIST,

• progress to the application of the method to our scientific ensembles,
including Kármán vortex street (KVS), Markov chain Monte Carlo
(MCMC) [9], and Drop Dynamics [4].

7. Projection and clustering, either directly in 2D or after applying standard
dimensionality reduction (DR) techniques, as described in [3].

8. Visualization of results in 2D, following a similar approach to [3].

9. Implementation of interactive visualization, supporting both 2D and 3D,
accessible via web browsers.

Prerequisites

• Good knowledge of Python and experience with deep learning libraries,
such as Keras, Tensorflow, or PyTorch.

• Completed courses such as Machine Learning or Deep Learning; Informa-
tion Visualization, Scientific Visualization, or Computer Vision.
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This project is suitable for a master’s thesis or an internship and may also be
adapted for a dedicated and enthusiastic bachelor’s thesis student. Successful
outcomes from this project hold the potential for publication.
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